RESUMEN
Immune checkpoint inhibitors (ICIs) are used to treat many cancers, and cutaneous immune-related adverse events (cirAEs) are among the most frequently encountered toxic effects. Understanding the incidence and prognostic associations of cirAEs is of importance as their uses in different settings, combinations, and tumor types expand. To evaluate the incidence of cirAEs and their association with outcome measures across a variety of ICI regimens and cancers, we performed a systematic review and meta-analysis of published trials of anti-programmed death-1/ligand-1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) ICIs, both alone and in combination with chemotherapy, antiangiogenic agents, or other ICIs in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and urothelial carcinoma. Key findings of our study include variable cirAE incidence among tumors and ICI regimens, positive association with increased cirAE incidence and response rate, as well as significant association between increased vitiligo incidence and overall survival. Across 174 studies, rash, pruritis, and vitiligo were the most reported cirAEs, with incidences of 16.7%, 18.0%, and 6.6%, respectively. Higher incidence of cirAEs was associated with ICI combination regimens and with CTLA-4-containing regimens, particularly with higher doses of ipilimumab, as compared to PD-1/L1 monotherapies. Outcome measures including response rate and progression-free survival were positively correlated with incidence of cirAEs. The response rate and incidence of pruritis, vitiligo, and rash were associated with expected rises in incidence of 0.17% (p = 0.0238), 0.40% (p = 0.0010), and 0.18% (p = 0.0413), respectively. Overall survival was positively correlated with the incidence of pruritis, vitiligo, and rash; this association was significant for vitiligo (p = 0.0483). Our analysis provides benchmark incidence rates for cirAEs and links cirAEs with favorable treatment outcomes at a study level across diverse solid tumors and multiple ICI regimens.
RESUMEN
INTRODUCTION: Immune checkpoint inhibitors (ICIs) have become a pillar of treatment for numerous cancers with increasing use in combination with other ICIs and in earlier stages of disease treatment. Although effective, ICI use is accompanied by a milieu of potentially bothersome or even life-threatening toxicities known as immune-related adverse events (irAEs), necessitating careful monitoring and early intervention. AREAS COVERED: In this review, we provide an overview of recent advances surrounding toxicity pathophysiology and treatment in the context of relevant organ systems. An emphasis on current treatments by toxicity, as well as updates on steroid-refractory toxicities, chronic toxicities, and biomarkers will be a focus of this update on the current understanding of irAEs. EXPERT OPINION: ICI toxicities are a major limitation on the deployment of multi-agent ICI regimens and are thus a major priority to understand, treat, and prevent. Recent developments have led to greater understanding of the pathophysiology of these events, which may lead to improved prevention or mitigation strategies. Further, early studies have also suggested steroid-sparing approaches that may be useful. Ultimately, preventing and managing irAEs will be a key goal toward successful ICI treatment across a broader range of patients with cancer.
Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Neoplasias/tratamiento farmacológico , Biomarcadores , Esteroides/uso terapéuticoRESUMEN
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans.
RESUMEN
Regulatory T (Treg) cells are essential for peripheral tolerance and rely on the transcription factor (TF) Foxp3 for their generation and function. Several other TFs are critical for the Treg cell program. We found that mice deficient in Bcl11b TF solely in Treg cells developed fatal autoimmunity, and Bcl11b-deficient Treg cells had severely altered function. Bcl11b KO Treg cells showed decreased functional marker levels in homeostatic conditions, inflammation, and tumors. Bcl11b controlled expression of essential Treg program genes at steady state and in inflammation. Bcl11b bound to genomic regulatory regions of Treg program genes in both human and mouse Treg cells, overlapping with Foxp3 binding; these genes showed altered chromatin accessibility in the absence of Bcl11b. Additionally, Bcl11b restrained myeloid and NK cell programs in Treg cells. Our study provides new mechanistic insights on the Treg cell program and identity control, with major implications for therapies in autoimmunity and cancer.