Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477801

RESUMEN

SUMMARY: Xpaths is a collection of algorithms that allow for the prediction of compound-induced molecular mechanisms of action by integrating phenotypic endpoints of different species; and proposes follow-up tests for model organisms to validate these pathway predictions. The Xpaths algorithms are applied to predict developmental and reproductive toxicity (DART) and implemented into an in silico platform, called DARTpaths. AVAILABILITY AND IMPLEMENTATION: All code is available on GitHub https://github.com/Xpaths/dartpaths-app under Apache license 2.0, detailed overview with demo is available at https://www.vivaltes.com/dartpaths/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos
2.
Arch Toxicol ; 97(12): 3075-3083, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37755502

RESUMEN

In Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) the criterion for deciding the studies that must be performed is the annual tonnage of the chemical manufactured or imported into the EU. The annual tonnage may be considered as a surrogate for levels of human exposure but this does not take into account the physico-chemical properties and use patterns that determine exposure. Chemicals are classified using data from REACH under areas of health concern covering effects on the skin and eye; sensitisation; acute, repeated and prolonged systemic exposure; effects on genetic material; carcinogenicity; and reproduction and development. We analysed the mandated study lists under REACH for each annual tonnage band in terms of the information they provide on each of the areas of health concern. Using the European Chemicals Agency (ECHA) REACH Registration data base of over 20,000 registered substances, we found that only 19% of registered substances have datasets on all areas of health concern. Information limited to acute exposure, sensitisation and genotoxicity was found for 62%. The analysis highlighted the shortfall of information mandated for substances in the lower tonnage bands. Deploying New Approach Methodologies (NAMs) at this lower tonnage band to assess health concerns which are currently not covered by REACH, such as repeat and extended exposure and carcinogenicity, would provide additional information and would be a way for registrants and regulators to gain experience in the use of NAMs. There are currently projects in Europe aiming to develop NAM-based assessment frameworks and they could find their first use in assessing low tonnage chemicals once confidence has been gained by their evaluation with data rich chemicals.


Asunto(s)
Reproducción , Piel , Humanos , Europa (Continente) , Medición de Riesgo/métodos
3.
Arch Toxicol ; 97(8): 2291-2302, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37296313

RESUMEN

In a joint effort involving scientists from academia, industry and regulatory agencies, ECETOC's activities in Omics have led to conceptual proposals for: (1) A framework that assures data quality for reporting and inclusion of Omics data in regulatory assessments; and (2) an approach to robustly quantify these data, prior to interpretation for regulatory use. In continuation of these activities this workshop explored and identified areas of need to facilitate robust interpretation of such data in the context of deriving points of departure (POD) for risk assessment and determining an adverse change from normal variation. ECETOC was amongst the first to systematically explore the application of Omics methods, now incorporated into the group of methods known as New Approach Methodologies (NAMs), to regulatory toxicology. This support has been in the form of both projects (primarily with CEFIC/LRI) and workshops. Outputs have led to projects included in the workplan of the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) group of the Organisation for Economic Co-operation and Development (OECD) and to the drafting of OECD Guidance Documents for Omics data reporting, with potentially more to follow on data transformation and interpretation. The current workshop was the last in a series of technical methods development workshops, with a sub-focus on the derivation of a POD from Omics data. Workshop presentations demonstrated that Omics data developed within robust frameworks for both scientific data generation and analysis can be used to derive a POD. The issue of noise in the data was discussed as an important consideration for identifying robust Omics changes and deriving a POD. Such variability or "noise" can comprise technical or biological variation within a dataset and should clearly be distinguished from homeostatic responses. Adverse outcome pathways (AOPs) were considered a useful framework on which to assemble Omics methods, and a number of case examples were presented in illustration of this point. What is apparent is that high dimension data will always be subject to varying processing pipelines and hence interpretation, depending on the context they are used in. Yet, they can provide valuable input for regulatory toxicology, with the pre-condition being robust methods for the collection and processing of data together with a comprehensive description how the data were interpreted, and conclusions reached.


Asunto(s)
Rutas de Resultados Adversos , Genómica , Genómica/métodos , Medición de Riesgo , Toxicogenética , Proyectos de Investigación
4.
Regul Toxicol Pharmacol ; 145: 105524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925098

RESUMEN

Regulatory science, rooted in legal requirements, provides a mechanism for identifying, assessing, and managing harm to humans and the environment from exposure to hazardous substances. A challenge for regulatory authorities is that many governing laws reflect the scientific paradigm of the mid-20th century. By the nature of legislative processes, most laws are not able to readily adapt to incorporate scientific advances that are inherent in an ever-evolving paradigm. Consequently, the issue of rigid legal frameworks has become prominent in global discussions related to the incorporation of reliable and relevant modern technology to fulfill regulatory needs. To explore this issue, we apply Thomas Kuhn's The Structure of Scientific Revolutions as a conceptual framework to help understand the natural progression of scientific paradigms (from normal science, to anomaly, to crisis, to revolution, and finally to a new normal), identify where we are now in the paradigm cycle, and to explore a path towards a revolution that enables timely implementation of the best available science to fulfil legal requirements.


Asunto(s)
Ciencia , Humanos , Sustancias Peligrosas
5.
Regul Toxicol Pharmacol ; 144: 105483, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640101

RESUMEN

Understanding and estimating the exposure to a substance is one of the fundamental requirements for safe manufacture and use. Many approaches are taken to determine exposure to substances, mainly driven by potential use and regulatory need. There are many opportunities to improve and optimise the use of exposure information for chemical safety. The European Partnership for Alternative Approaches to Animal Testing (EPAA) therefore convened a Partners' Forum (PF) to explore exposure considerations in human safety assessment of industrial products to agree key conclusions for the regulatory acceptance of exposure assessment approaches and priority areas for further research investment. The PF recognised the widescale use of exposure information across industrial sectors with the possibilities of creating synergies between different sectors. Further, the PF acknowledged that the EPAA could make a significant contribution to promote the use of exposure data in human safety assessment, with an aim to address specific regulatory needs. To achieve this, research needs, as well as synergies and areas for potential collaboration across sectors, were identified.


Asunto(s)
Alternativas a las Pruebas en Animales , Industrias , Animales , Humanos , Comercio , Medición de Riesgo
6.
PLoS Comput Biol ; 17(2): e1008562, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617524

RESUMEN

Effective regulation of the sonic hedgehog (Shh) signalling pathway is essential for normal development in a wide variety of species. Correct Shh signalling requires the formation of Shh aggregates on the surface of producing cells. Shh aggregates subsequently diffuse away and are recognised in receiving cells located elsewhere in the developing embryo. Various mechanisms have been postulated regarding how these aggregates form and what their precise role is in the overall signalling process. To understand the role of these mechanisms in the overall signalling process, we formulate and analyse a mathematical model of Shh aggregation using nonlinear ordinary differential equations. We consider Shh aggregate formation to comprise of multimerisation, association with heparan sulfate proteoglycans (HSPG) and binding with lipoproteins. We show that the size distribution of the Shh aggregates formed on the producing cell surface resembles an exponential distribution, a result in agreement with experimental data. A detailed sensitivity analysis of our model reveals that this exponential distribution is robust to parameter changes, and subsequently, also to variations in the processes by which Shh is recruited by HSPGs and lipoproteins. The work demonstrates the time taken for different sized Shh aggregates to form and the important role this likely plays in Shh diffusion.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Lipoproteínas/química , Transducción de Señal , Algoritmos , Membrana Celular/metabolismo , Simulación por Computador , Difusión , Proteínas Hedgehog/metabolismo , Humanos , Modelos Teóricos , Unión Proteica
7.
Xenobiotica ; 50(3): 318-322, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31180273

RESUMEN

1. A number of chemicals have been shown to produce disruption of the thyroid gland, resulting in reduced thyroid hormone synthesis, by a mechanism involving inhibition of thyroid peroxidase (TPO) activity (EC 1.11.1.8).2. An assay was developed for rat thyroid gland microsomal TPO activity, employing L-tyrosine as the physiological substrate, with analysis of the formation of the 3-iodo-L-tyrosine (3MIT) metabolite by ultra-performance liquid chromatography-mass spectrometry-mass spectrometry.3. Formation of 3MIT was linear with respect to both rat thyroid gland microsomal protein concentration and incubation time, whereas only small quantities of 3,5-diodo-L-tyrosine were formed.4. Studies were performed with nine known TPO inhibitors. The most potent inhibitors were 3-amino-1,2,4-triazole, ethylene thiourea, methimazole and 6-propyl-2-thiouracil which had IC50 values (i.e. concentration to produce a 50% inhibition of enzyme activity) of 0.059, 0.791, 1.07 and 1.96 µM, respectively, whereas the least potent inhibitor was sodium perchlorate which had an IC50 value of 13,800 µM.5. For five inhibitors, where literature data were available, the observed IC50 values obtained in this study employing rat thyroid gland microsomes and L-tyrosine as substrate were similar to those previously reported using the spectrophotometric guaiacol oxidation assay.


Asunto(s)
Bioensayo/métodos , Inhibidores Enzimáticos/farmacología , Yoduro Peroxidasa/antagonistas & inhibidores , Xenobióticos/farmacología , Animales , Yoduro Peroxidasa/metabolismo , Ratas , Glándula Tiroides
8.
Environ Sci Technol ; 53(1): 463-474, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520632

RESUMEN

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA's reactive metabolite MBP and the development of valvular-cardiovascular disease states.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Niño , Estrógenos , Humanos , Fenoles
9.
J Theor Biol ; 443: 157-176, 2018 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-29355536

RESUMEN

We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded.


Asunto(s)
Colesterol/biosíntesis , Hepatocitos/metabolismo , Lipogénesis/fisiología , Ácido Mevalónico/metabolismo , Modelos Biológicos , Animales , Familia 51 del Citocromo P450/metabolismo , Humanos , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
10.
Arch Toxicol ; 92(4): 1657-1661, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29549413

RESUMEN

The advent of adverse outcome pathways (AOPs) has provided a new lexicon for description of mechanistic toxicology, and a renewed enthusiasm for exploring modes of action resulting in adverse health and environmental effects. In addition, AOPs have been used successfully as a framework for the design and development of non-animal approaches to toxicity testing. Although the value of AOPs is widely recognised, there remain challenges and opportunities associated with their use in practise. The purpose of this article is to consider specifically how the future trajectory of AOPs may provide a basis for addressing some of those challenges and opportunities.


Asunto(s)
Rutas de Resultados Adversos , Alternativas a las Pruebas en Animales , Pruebas de Toxicidad , Animales , Humanos , Medición de Riesgo
11.
ALTEX ; 41(1): 119-130, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37658815

RESUMEN

In 2019, the US EPA Administrator issued a directive directing the agency away from reliance on vertebrate tests by 2035, whilst maintaining high-quality human health and environmental risk assessments. There is no accepted approach to achieve this. The decade-long duration of the crop protection (CP) chemical R&D process therefore requires both the invention and application of a modernized approach to those CP chemical projects entering corporate research portfolios by the mid-2020s. We conducted problem formulation discussions with regulatory agency scientists which created the problem statement: "Develop, demonstrate, and implement a modern scientifically sound and robust strategy that applies appropriate and flexible exposure and effects characterization without chemical specific vertebrate tests to reliably address risk, uncertainties, and deficiencies in data and its interpretation with equivalent confidence as do the currently accepted test guidelines and meet the regulatory needs of the agencies". The solution must provide the knowledge needed to confidently conclude human health and environmental protective risk assessments. Exploring this led to a conceptual model involving the creation and parallel submission of a new approach without reliance on chemical-specific vertebrate tests. Assessment in parallel to a traditional package will determine whether it supports some, or all, of the necessary risk management actions. Analysis of any deficiencies will provide valuable feedback to focus development of tools or approaches for subsequent iterations. When found to provide sufficient information, it will form the technical foun­dation of stakeholder engagement to explore acceptance of a new approach to CP chemical risk assessment.


The US EPA, and other regulatory agencies, aim to reduce the use of vertebrate animal tests for assessing risks of crop protection chemicals. There is currently no accepted way to do this. We outline a proposal to perform both the assessment using traditional vertebrate testing and a set of new non-animal methods. These data sets must each be combined with a calculated estimate of user exposure to the pesticide based on its intended use. Comparing the outcome of these two assess­ments will show whether the set of non-animal methods needs to be improved further. When the new approach appears to reliably predict the risks, the different stakeholders must be brought together to assess whether the non-animal methods package is acceptable and can replace the tests on vertebrate animals while maintaining the same level of protection of human health and the environment.


Asunto(s)
Seguridad Química , Humanos , Protección de Cultivos , Medición de Riesgo
12.
Toxicol Res (Camb) ; 13(2): tfae044, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533179

RESUMEN

New approach methodologies (NAMs) can deliver improved chemical safety assessment through the provision of more protective and/or relevant models that have a reduced reliance on animals. Despite the widely acknowledged benefits offered by NAMs, there continue to be barriers that prevent or limit their application for decision-making in chemical safety assessment. These include barriers related to real and perceived scientific, technical, legislative and economic issues, as well as cultural and societal obstacles that may relate to inertia, familiarity, and comfort with established methods, and perceptions around regulatory expectations and acceptance. This article focuses on chemical safety science, exposure, hazard, and risk assessment, and explores the nature of these barriers and how they can be overcome to drive the wider exploitation and acceptance of NAMs. Short-, mid- and longer-term goals are outlined that embrace the opportunities provided by NAMs to deliver improved protection of human health and environmental security as part of a new paradigm that incorporates exposure science and a culture that promotes the use of protective toxicological risk assessments.

13.
J Proteome Res ; 12(12): 5775-90, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24161236

RESUMEN

Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias Hepáticas Experimentales/metabolismo , Hígado/efectos de los fármacos , Metabolómica , Mutágenos/toxicidad , Animales , Biomarcadores/metabolismo , Carcinógenos/clasificación , Daño del ADN , Eicosanoides/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Mutágenos/clasificación , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo
14.
Avian Dis ; 57(1): 159-63, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23678748

RESUMEN

Avian adenovirus infections cause important disease complexes in chickens, but many of the viruses also infect chickens without resulting in overt disease. Previously several outbreaks of gizzard erosions caused by a fowl adenovirus A serotype-1 (FAdV-1) were reported from Japan. Here we report an outbreak of gizzard erosions in 12 broiler flocks in Germany in 2011. Chickens had a reduced daily weight gain and a higher total mortality rate of up to 8%. The birds showed a severe detachment of the koilin layer and ulcerative to necrotizing lesions of the underlying mucosa. Histopathologically, necrotizing ventriculitis with basophilic, intranuclear inclusion bodies in epithelial cells was diagnosed. Immunohistochemistry, egg culture, and electron microscopic examination revealed adenovirus-like particles in the samples. No concurrent infectious agent could be identified. The virus was genotyped as FAdV-1 by PCR and subsequent sequencing. Phylogenetic analysis of the hexon loop L1 gene yielded 100% sequence identity to the chicken embryo lethal orphan strain. These findings suggest that outbreaks of adenoviral gizzard erosion can lead to significant economic losses in Germany and may be caused by an unusual virulent FAdV-1 strain.


Asunto(s)
Pollos , Brotes de Enfermedades/veterinaria , Adenovirus A Aviar/aislamiento & purificación , Molleja de las Aves/patología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Gastropatías/veterinaria , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Adenovirus A Aviar/genética , Técnicas de Genotipaje/veterinaria , Alemania/epidemiología , Molleja de las Aves/ultraestructura , Microscopía Electrónica de Transmisión/veterinaria , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/patología , Análisis de Secuencia de ADN/veterinaria , Gastropatías/epidemiología , Gastropatías/patología , Gastropatías/virología , Aumento de Peso
15.
Stress Health ; 39(4): 766-781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36636819

RESUMEN

Incivility from customers is a common occurrence for employees working in service-oriented organizations. Typically, such incivility engenders instigated mistreatment, both towards customers and colleagues. Not much is understood, however, about the mechanisms underlying the relations between customer incivility and instigated incivility. Answering recent calls from incivility scholars, the present research, drawing from Self-Regulatory Resource Theory and Stressor-Emotion models of workplace behaviour, explored cognitive (i.e., self-regulatory resource depletion) and affective (i.e., negative affect) pathways that would explain relations between customer incivility and instigated incivility towards others. Through two multi-wave studies with different time lags (N1  = 180, weekly lags; N2  = 192, within-week lags) and different operationalizations of the instigated incivility construct (i.e., broad [unidimensional] and narrow [multidimensional]), we find consistent support for the mediating effects of the affective pathway. While our first study finds that customer incivility is linked to broad instigated incivility through negative affect, our second study finds that customer incivility is linked to, more specifically, gossip, exclusionary behaviour, and hostility through negative affect. In both studies, however, no support was found for the mediating effects of the cognitive pathway. Implications for both research and practice are discussed, and future research directions are offered.


Asunto(s)
Incivilidad , Humanos , Relaciones Interpersonales , Emociones , Lugar de Trabajo/psicología
16.
Toxicol Lett ; 380: 62-68, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996930

RESUMEN

INTRODUCTION: Acetyl-coenzyme A carboxylase (ACCase) inhibition is an attractive herbicide target. However, issues with fetal developmental toxicity identified at the late stages of the development process can halt progression of previously promising candidates. OBJECTIVES: To select and verify predictive lipid biomarkers of ACCase inhibition activity in vivo using liver samples obtained from early stage 7 day repeat dose studies in non-pregnant female Han Wistar rats that could be translated to developmental toxicity endpoints discovered during late-stage studies to provide an early screening tool. METHODS: Liver samples from eight rat repeat dose studies, exposed to six ACCase inhibitors from three different chemistries and one alternative mode of action (MoA) that also perturbs lipid biochemistry, were analysed using liquid chromatography - high resolution accurate mass - mass spectrometry. Multivariate and univariate data analysis methods were used for biomarker discovery and validation. RESULTS: A biomarker signature consisting of sixteen lipids biomarkers were selected. Verification of the signature as indicative of ACCase inhibition was established by demonstrating consistent perturbations in the biomarkers using two different ACCase inhibitor chemistries and the lack thereof with an alternate MoA. The fold change profile pattern was predictive of which test substance doses would or would not cause developmental toxicity. CONCLUSION: A strategy for selecting and verifying a robust signature of lipid biomarkers for predicting a toxicological end point has been described and demonstrated. Differences in lipidomic profiles correlated with developmental toxicity suggesting that indicators of a molecular initiation event resulting in pup developmental toxicity can be predicted from short term, toxicity studies conducted in non-pregnant adult female Han Wistar rats.


Asunto(s)
Acetil-CoA Carboxilasa , Lipidómica , Femenino , Ratas , Animales , Ratas Wistar , Biomarcadores , Hígado , Coenzima A , Lípidos
17.
ALTEX ; 40(3): 534-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888967

RESUMEN

Progress in developing new tools, assays, and approaches to assess human hazard and health risk provides an opportunity to re-evaluate the necessity of dog studies for the safety evaluation of agrochemicals. A workshop was held where partic­ipants discussed the strengths and limitations of past use of dogs for pesticide evaluations and registrations. Opportunities were identified to support alternative approaches to answer human safety questions without performing the required 90-day dog study. Development of a decision tree for determining when the dog study might not be necessary to inform pesticide safety and risk assessment was proposed. Such a process will require global regulatory authority participation to lead to its acceptance. The identification of unique effects in dogs that are not identified in rodents will need further evaluation and determination of their relevance to humans. The establishment of in vitro and in silico approaches that can provide critical data on relative species sensitivity and human relevance will be an important tool to advance the decision process. Promising novel tools including in vitro comparative metabolism studies, in silico models, and high-throughput assays able to identify metabolites and mechanisms of action leading to development of adverse outcome pathways will need further development. To replace or eliminate the 90-day dog study, a collaborative, multidisciplinary, international effort that transcends organi­zations and regulatory agencies will be needed in order to develop guidance on when the study would not be necessary for human safety and risk assessment.


Asunto(s)
Rutas de Resultados Adversos , Plaguicidas , Animales , Perros , Humanos , Agroquímicos/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo , Simulación por Computador
18.
Mutat Res ; 746(2): 97-103, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22445948

RESUMEN

Toxicogenomics (TGx) can be defined as the application of "omics" techniques to toxicology and risk assessment. By identifying molecular changes associated with toxicity, TGx data might assist hazard identification and investigate causes. Early technical challenges were evaluated and addressed by consortia (e.g. ISLI/HESI and the Microarray Quality Control consortium), which demonstrated that TGx gave reliable and reproducible information. The MAQC also produced "best practice on signature generation" after conducting an extensive evaluation of different methods on common datasets. Two findings of note were the need for methods that control batch variability, and that the predictive ability of a signature changes in concert with the variability of the endpoint. The key challenge remaining is data interpretation, because TGx can identify molecular changes that are causal, associated with or incidental to toxicity. Application of Bradford Hill's tests for causation, which are used to build mode of action (MOA) arguments, can produce reasonable hypotheses linking altered pathways to phenotypic changes. However, challenges in interpretation still remain: are all pathway changes equal, which are most important and plausibly linked to toxicity? Therefore the expert judgement of the toxicologist is still needed. There are theoretical reasons why consistent alterations across a metabolic pathway are important, but similar changes in signalling pathways may not alter information flow. At the molecular level thresholds may be due to the inherent properties of the regulatory network, for example switch-like behaviours from some network motifs (e.g. positive feedback) in the perturbed pathway leading to the toxicity. The application of systems biology methods to TGx data can generate hypotheses that explain why a threshold response exists. However, are we adequately trained to make these judgments? There is a need for collaborative efforts between regulators, industry and academia to properly define how these technologies can be applied using appropriate case-studies.


Asunto(s)
Biomarcadores/análisis , Toxicogenética , Sustancias Peligrosas/farmacología , Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos
19.
J Public Health Dent ; 72(2): 143-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22316052

RESUMEN

OBJECTIVE: To assist stakeholders (policy makers, dentists and patients) implementing the Patient Protection and Affordable Care Act of 2010 in the United States by providing information on conundrums arising from previous policies of the UK Labour government and emergent policies of the recently elected Coalition Government. METHODS: The authors provide a background to the development of National Health Service dental services contrasted with US provision. Considerations are given from the different perspectives of stakeholders involved (policy makers, dentists, and patients). CONCLUSIONS: Policy makers must work under pressure for services to remain within boundaries of finite economic resources and what people are willing to pay for. The importance is stressed that they respond to public demands and workforce capability by clearly determining what the priorities should be, what services will be delivered, and defining responsibilities.


Asunto(s)
Reforma de la Atención de Salud , Política de Salud , Formulación de Políticas , Medicina Estatal , Reino Unido , Estados Unidos
20.
Pest Manag Sci ; 78(12): 5049-5056, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36317936

RESUMEN

The present agrochemical safety evaluation paradigm is long-standing and anchored in well-established testing and evaluation procedures. However, it does not meet the present-day challenges of rapidly growing populations, food insecurity, and pressures from climate change. To transform the current framework and apply modern evaluation strategies that better support sustainable agriculture, the Health and Environmental Sciences Institute (HESI) assembled a technical committee to reframe the safety evaluation of crop-protection products. The committee is composed of international experts from regulatory agencies, academia, industry and nongovernmental organizations. Their mission is to establish a framework that supports the development of fit-for-purpose agrochemical safety evaluation that is applicable to changing global, as well as local needs and regulatory decisions, and incorporates relevant evolving science. This will be accomplished through the integration of state-of-the-art scientific methods, technologies and data sources, to inform safety and risk decisions, and adapt them to evolving local and global needs. The project team will use a systems-thinking approach to develop the tools that will implement a problem formulation and exposure driven approach to create sustainable, safe and effective crop protection products, and reduce, replace and refine animal studies with fit-for-purpose assays. A new approach necessarily will integrate the most modern tools and latest advances in chemical testing methods to guarantee the robust human and environmental safety and risk assessment of agrochemicals. This article summarizes the challenges associated with the modernization of agrochemical safety evaluation, proposes a potential roadmap, and seeks input and engagement from the broader community to advance this effort. © 2022 Health and Environmental Sciences Institute (HESI). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Agroquímicos , Protección de Cultivos , Humanos , Animales , Medición de Riesgo/métodos , Agricultura , Control de Plagas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA