RESUMEN
Background and Objectives: The term acrometastases (AM) refers to secondary lesions sited distally to the elbow and knee, representing 0.1% of all bony metastases. By frequency, pulmonary cancer and gastrointestinal and genitourinary tract neoplasms are the most responsible for the reported AM. Improvements in oncologic patient care favor an increase in the incidence of such rare cases. We performed a systematic review of acrometastases to the hand to provide further insight into the management of these fragile patients. We also present a peculiar case of simultaneous acrometastasis to the ring finger and pathological vertebral fracture. Material and Methods: A literature search according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement was conducted using the PubMed, Google Scholar, and Scopus databases in December 2020 on metastasis to the hand and wrist, from 1986 to 2020. MeSH terms included acrometastasis, carpal metastasis, hand metastasis, finger metastasis, phalangeal metastasis, and wrist metastasis. Results: In total, 215 studies reporting the follow-up of 247 patients were analyzed, with a median age of 62 years (range 10-91 years). Overall, 162 out of 247 patients were males (65.6%) and 85 were females (34.4%). The median reported follow-up was 5 months (range 0.5-39). The median time from primary tumor diagnosis to acrometastasis was 24 months (range 0.7-156). Acrometastases were located at the finger/phalanx (68.4%), carpal (14.2%), metacarpal (14.2%), or other sites (3.2%). The primary tumors were pulmonary in 91 patients (36.8%). The average interval from primary tumor diagnosis to acrometastasis varied according to the primary tumor type from 2 months (in patients with mesenchymal tumors) to 64.0 months (in patients with breast cancer). Conclusions: Acrometastases usually develop in the late stage of oncologic disease and are associated with short life expectancy. Their occurrence can no longer be considered rare; physicians should thus be updated on their surgical management and their impact on prognosis and survival.
Asunto(s)
Neoplasias Óseas , Falanges de los Dedos de la Mano , Neoplasias Pulmonares , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Dedos , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto JovenRESUMEN
Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Protones , Neoplasias de la Mama Triple Negativas/radioterapia , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Terapia de Protones , Familia-src Quinasas/antagonistas & inhibidores , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Perfilación de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Concentración 50 Inhibidora , Ratones , Tolerancia a Radiación/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance.
RESUMEN
PURPOSE: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. METHODS: A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC "Hadrontherapy" Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. RESULTS: Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. CONCLUSION: This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.
Asunto(s)
Terapia de Protones , Protones , Salicilatos , Humanos , Dosificación Radioterapéutica , Carbono , Planificación de la Radioterapia Asistida por Computador , Método de Montecarlo , Efectividad Biológica RelativaRESUMEN
PURPOSE: Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS: The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS: With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION: Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Asunto(s)
Supervivencia Celular , Helio , Transferencia Lineal de Energía , Tolerancia a Radiación , Humanos , Supervivencia Celular/efectos de la radiación , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Histonas/metabolismo , IonesRESUMEN
BACKGROUND: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces. PURPOSE: This study aims to characterize a novel hydrogenated amorphous silicon (a-Si:H) radiation detector for the dosimetry of therapeutic x-ray beams. The detectors are flexible as they are fabricated directly on a flexible polyimide (Kapton) substrate. METHODS: The potential of this technology for application as a real-time flexible detector is investigated through a combined dosimetric and flexibility study. Measurements of fundamental dosimetric quantities were obtained including output factor (OF), dose rate dependence (DPP), energy dependence, percentage depth dose (PDD), and angular dependence. The response of the a-Si:H detectors investigated in this study are benchmarked directly against commercially available ionization chambers and solid-state diodes currently employed for QA practices. RESULTS: The a-Si:H detectors exhibit remarkable dose linearities in the direct detection of kV and MV therapeutic x-rays, with calibrated sensitivities ranging from (0.580 ± 0.002) pC/cGy to (19.36 ± 0.10) pC/cGy as a function of detector thickness, area, and applied bias. Regarding dosimetry, the a-Si:H detectors accurately obtained OF measurements that parallel commercially available detector solutions. The PDD response closely matched the expected profile as predicted via Geant4 simulations, a PTW Farmer ionization chamber and a PTW ROOS chamber. The most significant variation in the PDD performance was 5.67%, observed at a depth of 3 mm for detectors operated unbiased. With an external bias, the discrepancy in PDD response from reference data was confined to ± 2.92% for all depths (surface to 250 mm) in water-equivalent plastic. Very little angular dependence is displayed between irradiations at angles of 0° and 180°, with the most significant variation being a 7.71% decrease in collected charge at a 110° relative angle of incidence. Energy dependence and dose per pulse dependence are also reported, with results in agreement with the literature. Most notably, the flexibility of a-Si:H detectors was quantified for sample bending up to a radius of curvature of 7.98 mm, where the recorded photosensitivity degraded by (-4.9 ± 0.6)% of the initial device response when flat. It is essential to mention that this small bending radius is unlikely during in vivo patient dosimetry. In a more realistic scenario, with a bending radius of 15-20 mm, the variation in detector response remained within ± 4%. After substantial bending, the detector's photosensitivity when returned to a flat condition was (99.1 ± 0.5)% of the original response. CONCLUSIONS: This work successfully characterizes a flexible detector based on thin-film a-Si:H deposited on a Kapton substrate for applications in therapeutic x-ray dosimetry. The detectors exhibit dosimetric performances that parallel commercially available dosimeters, while also demonstrating excellent flexibility results.
Asunto(s)
Radiometría , Silicio , Radiometría/instrumentación , Hidrógeno , Dosimetría in Vivo , Terapia por Rayos X/instrumentación , HumanosRESUMEN
Objective.Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Approach.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).Results.The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy-1outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy-1by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector's performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1)µm and (405 ± 5)µm, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials.Significance.The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance,in-vivodosimetry and in-line beam monitoring for MRT and FLASH therapy.
Asunto(s)
Radiometría , Silicio , Silicio/química , Radiometría/instrumentación , Hidrógeno , Radioterapia/instrumentaciónRESUMEN
This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices. Spectroscopic measurements provide insights into the intricate relationship between the structure and electronic properties of a-Si, enhancing our understanding of how specific configurations, such as the choice of substrate, can markedly influence detector performance. In this study, we compare the performance of a-Si detectors deposited on two different substrates: crystalline silicon (c-Si) and flexible Kapton. Our findings suggest that detectors deposited on Kapton exhibit reduced sensitivity, despite having comparable noise and leakage current levels to those on crystalline silicon. We hypothesize that this discrepancy may be attributed to the substrate material, differences in film morphology, and/or the alignment of energy levels. Further measurements are planned to substantiate these hypotheses.
RESUMEN
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via µ-positron emission tomography/computed tomography (µPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Asunto(s)
Glioblastoma , Fármacos Sensibilizantes a Radiaciones , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Glioblastoma/patología , Protones , Boro , Mitofagia , Calidad de Vida , Fármacos Sensibilizantes a Radiaciones/farmacología , Muerte Celular , Microambiente TumoralRESUMEN
Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.
Asunto(s)
Silicio , Sincrotrones , Rayos X , Australia , Radiometría/métodosRESUMEN
BACKGROUND: The development of [68Ga]Ga-DOTA-SSTR PET tracers has garnered interest in neuro-oncology, to increase accuracy in diagnostic, radiation planning, and neurotheranostics protocols. We systematically reviewed the literature on the current uses of [68Ga]Ga-DOTA-SSTR PET in brain tumors. METHODS: PubMed, Scopus, Web of Science, and Cochrane were searched in accordance with the PRISMA guidelines to include published studies and ongoing trials utilizing [68Ga]Ga-DOTA-SSTR PET in patients with brain tumors. RESULTS: We included 63 published studies comprising 1030 patients with 1277 lesions, and 4 ongoing trials. [68Ga]Ga-DOTA-SSTR PET was mostly used for diagnostic purposes (62.5%), followed by treatment planning (32.7%), and neurotheranostics (4.8%). Most lesions were meningiomas (93.6%), followed by pituitary adenomas (2.8%), and the DOTATOC tracer (53.2%) was used more frequently than DOTATATE (39.1%) and DOTANOC (5.7%), except for diagnostic purposes (DOTATATE 51.1%). [68Ga]Ga-DOTA-SSTR PET studies were mostly required to confirm the diagnosis of meningiomas (owing to their high SSTR2 expression and tracer uptake) or evaluate their extent of bone invasion, and improve volume contouring for better radiotherapy planning. Some studies reported the uncommon occurrence of SSTR2-positive brain pathology challenging the diagnostic accuracy of [68Ga]Ga-DOTA-SSTR PET for meningiomas. Pre-treatment assessment of tracer uptake rates has been used to confirm patient eligibility (high somatostatin receptor-2 expression) for peptide receptor radionuclide therapy (PRRT) (i.e., neurotheranostics) for recurrent meningiomas and pituitary carcinomas. CONCLUSION: [68Ga]Ga-DOTA-SSTR PET studies may revolutionize the routine neuro-oncology practice, especially in meningiomas, by improving diagnostic accuracy, delineation of radiotherapy targets, and patient eligibility for radionuclide therapies.
RESUMEN
BACKGROUND/AIM: One of the main limitations of standard imaging modalities is microscopic tumor extension, which is often difficult to detect on magnetic resonance imaging (MRI) and computer tomography (CT) in the early stages of the tumor. (68)Ga-DOTA(0)-Phe(1)-Tyr(3)-octreotide positron-emission tomography/computed tomography (68Ga-DOTATOC PET/CT) has shown efficacy in detecting lesions previously undiagnosed by neuroimaging modalities, such as MRI or CT, and has enabled the detection of multiple benign tumors (like multiple meningiomas in a patient presenting with a single lesion on MRI) or additional secondary metastatic locations. PATIENTS AND METHODS: We retrospectively reviewed data from the Cannizzaro Hospital on brain and body 68Ga-DOTATOC PET/CT "incidentalomas", defined as tumors missed on CT or MRI scans, but detected on 68Ga-DOTATOC PET/CT scans. "Incidentalomas" were classified into "brain" and "body" groups based on their location. The standardized uptake values (SUVs) were compared between the two groups. RESULTS: A total of 61 patients with "incidentalomas" documented on the 68Ga-DOTATOC PET/CT were identified: 18 patients with 25 brain lesions and 43 patients with 85 body lesions. The mean SUV at baseline was 9.01±7.66 in the brain group and 14.8±14.63 in the body group. CONCLUSION: We present the first series on brain and body "incidentalomas" detected on 68Ga-DOTATOC PET/CT. Whole-body 68Ga-DOTATOC PET/CT may be considered in selected patients with brain tumors with high expression of somatostatin receptors to assist radiosurgical or surgical planning and, simultaneously, provide accurate follow-up with early detection of potential metastases.
Asunto(s)
Neoplasias Meníngeas , Radiocirugia , Humanos , Estudios Retrospectivos , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de PositronesRESUMEN
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
RESUMEN
In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.
RESUMEN
PURPOSE: The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS: In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS: With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS: In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Transferencia Lineal de Energía , Protones , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Efectividad Biológica RelativaRESUMEN
Artificial Intelligence (AI) techniques have been implemented in the field of Medical Imaging for more than forty years. Medical Physicists, Clinicians and Computer Scientists have been collaborating since the beginning to realize software solutions to enhance the informative content of medical images, including AI-based support systems for image interpretation. Despite the recent massive progress in this field due to the current emphasis on Radiomics, Machine Learning and Deep Learning, there are still some barriers to overcome before these tools are fully integrated into the clinical workflows to finally enable a precision medicine approach to patients' care. Nowadays, as Medical Imaging has entered the Big Data era, innovative solutions to efficiently deal with huge amounts of data and to exploit large and distributed computing resources are urgently needed. In the framework of a collaboration agreement between the Italian Association of Medical Physicists (AIFM) and the National Institute for Nuclear Physics (INFN), we propose a model of an intensive computing infrastructure, especially suited for training AI models, equipped with secure storage systems, compliant with data protection regulation, which will accelerate the development and extensive validation of AI-based solutions in the Medical Imaging field of research. This solution can be developed and made operational by Physicists and Computer Scientists working on complementary fields of research in Physics, such as High Energy Physics and Medical Physics, who have all the necessary skills to tailor the AI-technology to the needs of the Medical Imaging community and to shorten the pathway towards the clinical applicability of AI-based decision support systems.
Asunto(s)
Inteligencia Artificial , Nube Computacional , Humanos , Italia , Física Nuclear , Medicina de PrecisiónRESUMEN
Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11Bâ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.
RESUMEN
The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded-meltblown-spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university "third-mission".
Asunto(s)
COVID-19/prevención & control , Laboratorios , Máscaras/normas , Pandemias , Humanos , ItaliaRESUMEN
BACKGROUND: Metastatic melanoma is one of the most aggressive tumours and is also very resistant to current therapeutic approaches. The aim of this investigation was the in vitro study of the anti-proliferative effects of fotemustine (FM; 100 and 250 microM), bevacizumab (5 microg/ml) and proton irradiation (12 and 16 Gy) on resistant HTB140 human melanoma cells. METHODS: Viability was estimated by sulphorhodamine B assay, while cell proliferation was analyzed by 5-bromo-2-deoxyuridine assay. Cell cycle distribution and apoptosis were examined using flow cytometry. RESULTS: Cell viability and proliferation were reduced after all applied treatments. The level of apoptosis significantly increased after treatment with FM, protons or a combination of all agents, while the apoptotic index ranged from 1.2 to 9.2. Proton irradiation, as well as combined treatment with bevacizumab and protons or 100 microM FM, bevacizumab and protons, have reduced melanoma cell proliferation through the induction of G1 phase arrest. Single FM (250 microM) or bevacizumab treatment and their combination, as well as the joint application of these 2 agents with protons, reduced cell proliferation and provoked G2 phase accumulation. CONCLUSION: The analyzed treatments reduced cell viability and proliferation, triggered G1 or G2 cell cycle phase accumulation and stimulated apoptotic cell death.