Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483293

RESUMEN

This study investigated the host response to a polymicrobial pulpal infection consisting of Streptococcus anginosus and Enterococcus faecalis, bacteria commonly implicated in dental abscesses and endodontic failure, using a validated ex vivo rat tooth model. Tooth slices were inoculated with planktonic cultures of S. anginosus or E. faecalis alone or in coculture at S. anginosus/E. faecalis ratios of 50:50 and 90:10. Attachment was semiquantified by measuring the area covered by fluorescently labeled bacteria. Host response was established by viable histological cell counts, and inflammatory response was measured using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. A significant reduction in cell viability was observed for single and polymicrobial infections, with no significant differences between infection types (∼2,000 cells/mm2 for infected pulps compared to ∼4,000 cells/mm2 for uninfected pulps). E. faecalis demonstrated significantly higher levels of attachment (6.5%) than S. anginosus alone (2.3%) and mixed-species infections (3.4% for 50:50 and 2.3% for 90:10), with a remarkable affinity for the pulpal vasculature. Infections with E. faecalis demonstrated the greatest increase in tumor necrosis factor alpha (TNF-α) (47.1-fold for E. faecalis, 14.6-fold for S. anginosus, 60.1-fold for 50:50, and 25.0-fold for 90:10) and interleukin 1ß (IL-1ß) expression (54.8-fold for E. faecalis, 8.8-fold for S. anginosus, 54.5-fold for 50:50, and 39.9-fold for 90:10) compared to uninfected samples. Immunohistochemistry confirmed this, with the majority of inflammation localized to the pulpal vasculature and odontoblast regions. Interestingly, E. faecalis supernatant and heat-killed E. faecalis treatments were unable to induce the same inflammatory response, suggesting E. faecalis pathogenicity in pulpitis is linked to its greater ability to attach to the pulpal vasculature.


Asunto(s)
Coinfección/patología , Enterococcus faecalis/patogenicidad , Interacciones Huésped-Parásitos , Pulpitis/microbiología , Pulpitis/fisiopatología , Ratas/microbiología , Streptococcus anginosus/patogenicidad , Animales , Modelos Animales
2.
Methods Mol Biol ; 2430: 375-383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476345

RESUMEN

Neuronal microtubules have long been known to contain intraluminal particles, called MIPs (microtubule inner proteins), most likely involved in the extreme stability of microtubules in neurons. This chapter describes a cryo-electron microscopy-based assay to visualize microtubules containing neuronal MIPs. We present two protocols to prepare MIPs-containing microtubules, using either in vitro microtubule polymerization assays or extraction of microtubules from mouse hippocampal neurons in culture.


Asunto(s)
Microtúbulos , Neuronas , Animales , Microscopía por Crioelectrón/métodos , Hipocampo , Ratones , Microtúbulos/metabolismo
3.
Bio Protoc ; 11(7): e3968, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33889662

RESUMEN

Microtubules (MT) are the most rigid component of the cytoskeleton. Nevertheless, they often appear highly curved in the cellular context and the mechanisms governing their overall shape are poorly understood. Currently, in vitro microtubule analysis relies primarily on electron microscopy for its high resolution and Total Internal Reflection Fluorescence (TIRF) microscopy for its ability to image live fluorescently-labelled microtubules and associated proteins. For three-dimensional analyses of microtubules with micrometer curvatures, we have developed an assay in which MTs are polymerized in vitro from MT seeds adhered to a glass slide in a manner similar to conventional TIRF microscopy protocols. Free fluorescent molecules are removed and the MTs are fixed by perfusion. The MTs can then be observed using a confocal microscope with an Airyscan module for higher resolution. This protocol allows the imaging of microtubules that have retained their original three-dimensional shape and is compatible with high-resolution immunofluorescence detection.

4.
Front Mol Neurosci ; 14: 665693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025352

RESUMEN

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs-including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);-were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6's effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.

5.
Sci Adv ; 6(14): eaaz4344, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270043

RESUMEN

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Ratones , Microtúbulos/metabolismo , Modelos Biológicos , Neuritas , Neuronas/ultraestructura , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA