Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 139(18): 2770-2781, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226739

RESUMEN

Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.


Asunto(s)
Linfoma , Sumoilación , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20 , Línea Celular Tumoral , Humanos , Células Asesinas Naturales , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Macrófagos/metabolismo , Rituximab/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico
2.
Artículo en Inglés | MEDLINE | ID: mdl-39320435

RESUMEN

Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.

3.
Mol Cancer Ther ; 19(10): 2079-2088, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788205

RESUMEN

Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).


Asunto(s)
Inmunoconjugados/uso terapéutico , Animales , Femenino , Células HEK293 , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones Desnudos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Appl Radiat Isot ; 140: 333-341, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30138815

RESUMEN

In the present study, the effect of radiolabeling conditions on radiolabeling efficiency and achievable specific activity of a DOTA-conjugated highly-lipophilic peptide containing three disulfide cyclization bonds was examined. The peptide is designed to bind specifically (with high affinity) to cell-surface receptor guanylyl cyclase C (GCC), which is universally expressed by colorectal cancer cells. The effect of systematic variation of chemical parameters pH, mass of peptide, acetate buffer concentration (ionic strength), and inclusion of ethanol in the radiolabeling reaction vessel on achievable specific activity and labeling efficiency was examined. In addition, a unique approach to acetone-based elution of 68Ga from an initial cation-exchange pre-concentration column is introduced, which improved radiochemical yield and radiochemical purity. For the evaluation of the acetone-based method, two different post-radiolabeling reverse-phase (C18) approaches to purify the final radiolabeled peptide were tested. These results revealed the potential for peptide degradation via the cleavage of disulfide cyclization bonds to form free thiols when using one of these C18 cartridges. The final optimized procedure enabled radiolabeling efficiency of greater than 99% and specific activity greater than 35 MBq/nmole in less than 30 min. The optimized parameters were amenable to the use of an automated 68Ge/68Ga generator and fluid-handling system for clinical production of the GCC receptor-specific [68Ga]DOTA-MLN6907 peptide. The chemical characteristics of individual peptides govern the most appropriate radiolabeling conditions for the preparation of radiopharmaceuticals.


Asunto(s)
Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Péptidos/química , Péptidos/síntesis química , Radiofármacos/química , Radiofármacos/síntesis química , Quelantes/química , Neoplasias Colorrectales/diagnóstico por imagen , Humanos , Péptidos/farmacocinética , Tomografía de Emisión de Positrones , Radioquímica/métodos , Radiofármacos/farmacocinética , Receptores de Enterotoxina/metabolismo
5.
J Nucl Med ; 59(9): 1461-1466, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29728518

RESUMEN

In vitro properties of antibody-drug conjugates (ADCs) such as binding, internalization, and cytotoxicity are often well characterized before in vivo studies. Interpretation of in vivo studies might be significantly enhanced by molecular imaging tools. We present here a dual-isotope cryoimaging quantitative autoradiography (CIQA) methodology combined with advanced 3-dimensional imaging and analysis allowing for the simultaneous study of both antibody and payload distribution in tissues of interest in a preclinical setting. Methods: TAK-264, an investigational ADC targeting anti-guanylyl cyclase C (GCC), was synthesized using tritiated monomethyl auristatin E. The tritiated ADC was then conjugated to diethylenetriaminepentaacetic acid, labeled with 111In, and evaluated in vivo in animals bearing GCC-positive and GCC-negative tumors. Results: CIQA revealed the time course of drug release from ADC and its distribution into various tumor regions that are less accessible to the antibody. For GCC-positive tumors, a representative section obtained 96 h after tracer injection showed only 0.8% of the voxels to have colocalized signal, versus over 15% of the voxels for a GCC-negative tumor section, suggesting successful and specific cleaving of the toxin in the GCC-positive lesions. Conclusion: The combination of a veteran established autoradiography technology with advanced image analysis methodologies affords an experimental tool that can support detailed characterization of ADC tumor penetration and pharmacokinetics.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Radioisótopos de Indio , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Anticuerpos Monoclonales Humanizados , Autorradiografía , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Imagenología Tridimensional , Cinética , Ratones , Ácido Pentético/química , Radioquímica
6.
PLoS One ; 13(1): e0191046, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370189

RESUMEN

Guanylyl cyclase C (GCC) is a cell-surface protein that is expressed by normal intestinal epithelial cells, more than 95% of metastatic colorectal cancers (mCRC), and the majority of gastric and pancreatic cancers. Due to strict apical localization, systemically delivered GCC-targeting agents should not reach GCC in normal intestinal tissue, while accessing antigen in tumor. We generated an investigational antibody-drug conjugate (TAK-264, formerly MLN0264) comprising a fully human anti-GCC monoclonal antibody conjugated to monomethyl auristatin E via a protease-cleavable peptide linker. TAK-264 specifically bound, was internalized by, and killed GCC-expressing cells in vitro in an antigen-density-dependent manner. In GCC-expressing xenograft models with similar GCC expression levels/patterns observed in human mCRC samples, TAK-264 induced cell death, leading to tumor regressions and long-term tumor growth inhibition. TAK-264 antitumor activity was generally antigen-density-dependent, although some GCC-expressing tumors were refractory to TAK-264-targeted high local concentrations of payload. These data support further evaluation of TAK-264 in the treatment of GCC-expressing tumors.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoconjugados/farmacología , Oligopéptidos/metabolismo , Receptores de Enterotoxina/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Western Blotting , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Femenino , Células HEK293 , Humanos , Mucosa Intestinal/enzimología , Ratones , Ratones SCID , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA