Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7880): 332-337, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616040

RESUMEN

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Asunto(s)
Bacteroides/enzimología , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatasas/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Colon/química , Cristalografía por Rayos X , Femenino , Galactosa/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Especificidad por Sustrato , Sulfatasas/química
2.
BMC Genomics ; 25(1): 950, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390408

RESUMEN

BACKGROUND: Brown algae belong to the Stramenopiles phylum and are phylogenetically distant from plants and other multicellular organisms. This independent evolutionary history has shaped brown algae with numerous metabolic characteristics specific to this group, including the synthesis of peculiar polysaccharides contained in their extracellular matrix (ECM). Alginates and fucose-containing sulphated polysaccharides (FCSPs), the latter including fucans, are the main components of ECMs. However, the metabolic pathways of these polysaccharides remain poorly described due to a lack of genomic data. RESULTS: An extensive genomic dataset has been recently released for brown algae and their close sister species, for which we previously performed an expert annotation of key genes involved in ECM-carbohydrate metabolisms. Here we provide a deeper analysis of this set of genes using comparative genomics, phylogenetics analyses, and protein modelling. Two key gene families involved in both the synthesis and degradation of alginate were suggested to have been acquired by the common ancestor of brown algae and their closest sister species Schizocladia ischiensis. Our analysis indicates that this assumption can be extended to additional metabolic steps, and thus to the whole alginate metabolic pathway. The pathway for the biosynthesis of fucans still remains biochemically unresolved and we also investigate putative fucosyltransferase genes that may harbour a fucan synthase activity in brown algae. CONCLUSIONS: Our analysis is the first extensive survey of carbohydrate-related enzymes in brown algae, and provides a valuable resource for future research into the glycome and ECM of brown algae. The expansion of specific families related to alginate metabolism may have represented an important prerequisite for the evolution of developmental complexity in brown algae. Our analysis questions the possible occurrence of FCSPs outside brown algae, notably within their closest sister taxon and in other Stramenopiles such as diatoms. Filling this knowledge gap in the future will help determine the origin and evolutionary history of fucan synthesis in eukaryotes.


Asunto(s)
Evolución Molecular , Matriz Extracelular , Phaeophyceae , Filogenia , Polisacáridos , Phaeophyceae/genética , Phaeophyceae/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/metabolismo , Matriz Extracelular/metabolismo , Alginatos/metabolismo , Genómica/métodos
3.
Environ Microbiol ; 26(5): e16624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757353

RESUMEN

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Asunto(s)
Proteínas Bacterianas , Glucanos , Fitoplancton , Glucanos/metabolismo , Fitoplancton/metabolismo , Fitoplancton/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacteroidetes/metabolismo , Bacteroidetes/genética , Eutrofización , Diatomeas/metabolismo , Diatomeas/genética , Receptores de Superficie Celular
4.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35710619

RESUMEN

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Asunto(s)
Microbioma Gastrointestinal , Sulfatasas , Bacterias/metabolismo , Humanos , Polisacáridos/química , Sulfatasas/química , Sulfatos/química
5.
Angew Chem Int Ed Engl ; 63(43): e202411171, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39022920

RESUMEN

The marine Bacteroidota Zobellia galactanivorans has a polysaccharide utilization locus dedicated to the catabolism of the red algal cell wall galactan carrageenan and its unique and industrially important α-3,6-anhydro-D-galactose (ADG) monosaccharide. Here we present the first analysis of the specific molecular interactions that the exo-(α-1,3)-3,6-anhydro-D-galactosidase ZgGH129 uses to cope with the strict steric restrictions imposed by its bicyclic ADG substrate - which is ring flipped relative to D-galactose. Crystallographic snapshots of key catalytic states obtained with the natural substrate and novel chemical tools designed to mimic species along the reaction coordinate, together with quantum mechanics/molecular mechanics (QM/MM) metadynamics methods and kinetic studies, demonstrate a retaining mechanism where the second step is rate limiting. The conformational landscape of the constrained 3,6-anhydro-D-galactopyranose ring proceeds through enzyme glycosylation B1,4→[E4]≠→E4/1C4 and deglycosylation E4/1C4→[E4]≠→B1,4 itineraries limited to the Southern Hemisphere of the Cremer-Pople sphere. These results demonstrate the conformational changes throughout catalysis in a non-standard, sterically restrained, bicyclic monosaccharide, and provide a molecular framework for mechanism-based inhibitor design for anhydro-type carbohydrate-processing enzymes and for future applications involving carrageenan degradation. In addition, our study provides a rare example of distinct niche-based conformational itineraries within the same carbohydrate-active enzyme family.


Asunto(s)
Pared Celular , Galactosa , Rhodophyta , Pared Celular/metabolismo , Pared Celular/enzimología , Rhodophyta/enzimología , Galactosa/análogos & derivados , Galactosa/metabolismo , Galactosa/química , Galactosidasas/metabolismo , Biocatálisis , Bacteroidetes/enzimología , Teoría Cuántica , Carragenina/metabolismo , Carragenina/química , Simulación de Dinámica Molecular
6.
J Biol Chem ; 298(12): 102707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402445

RESUMEN

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Asunto(s)
Chondrus , Rhodophyta , Chondrus/genética , Rhodophyta/genética , Polisacáridos , Glicósido Hidrolasas , Biología
7.
Glycobiology ; 31(10): 1364-1377, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34184062

RESUMEN

Alginate is a major compound of brown macroalgae and as such an important carbon and energy source for heterotrophic marine bacteria. Despite the rather simple composition of alginate only comprising mannuronate and guluronate units, these bacteria feature complex alginolytic systems that can contain up to seven alginate lyases. This reflects the necessity of large enzyme systems for the complete degradation of the abundant substrate. Numerous alginate lyases have been characterized. They belong to different polysaccharide lyase (PL) families, but only one crystal structure of a family 17 (PL17) alginate lyase has been reported to date, namely Alg17c from the gammaproteobacterium Saccharophagus degradans. Biochemical and structural characterizations are helpful to link sequence profiles to function, evolution of functions and niche-specific characteristics. Here, we combined detailed biochemical and crystallographic analysis of AlyA3, a PL17 alginate lyase from the marine flavobacteria Zobellia galactanivorans DsijT, providing the first structure of a PL17 in the Bacteroidetes phylum. AlyA3 is exo-lytic and highly specific of mannuronate stretches. As part of an "alginate utilizing locus", its activity is complementary to that of other characterized alginate lyases from the same bacterium. Structural comparison with Alg17c highlights a common mode of action for exo-lytic cleavage of the substrate, strengthening our understanding of the PL17 catalytic mechanism. We show that unlike Alg17c, AlyA3 contains an inserted flexible loop at the entrance to the catalytic groove, likely involved in substrate recognition, processivity and turn over.


Asunto(s)
Flavobacteriaceae/enzimología , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Biocatálisis , Polisacárido Liasas/genética , Conformación Proteica
8.
J Biol Chem ; 294(17): 6923-6939, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846563

RESUMEN

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and ß-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (ß-agarases and ß-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family ß-agarases and ß-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical ß-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from ß-porphyranases and classical ß-agarases.


Asunto(s)
Agar/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Flavobacteriaceae/enzimología , Hidrolasas/aislamiento & purificación , Secuencia de Aminoácidos , Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/metabolismo , Filogenia , Conformación Proteica , Agua de Mar/microbiología
9.
J Biol Chem ; 294(44): 15973-15986, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501245

RESUMEN

Glycoside hydrolase family (GH) 16 comprises a large and taxonomically diverse family of glycosidases and transglycosidases that adopt a common ß-jelly-roll fold and are active on a range of terrestrial and marine polysaccharides. Presently, broadly insightful sequence-function correlations in GH16 are hindered by a lack of a systematic subfamily structure. To fill this gap, we have used a highly scalable protein sequence similarity network analysis to delineate nearly 23,000 GH16 sequences into 23 robust subfamilies, which are strongly supported by hidden Markov model and maximum likelihood molecular phylogenetic analyses. Subsequent evaluation of over 40 experimental three-dimensional structures has highlighted key tertiary structural differences, predominantly manifested in active-site loops, that dictate substrate specificity across the GH16 evolutionary landscape. As for other large GH families (i.e. GH5, GH13, and GH43), this new subfamily classification provides a roadmap for functional glycogenomics that will guide future bioinformatics and experimental structure-function analyses. The GH16 subfamily classification is publicly available in the CAZy database. The sequence similarity network workflow used here, SSNpipe, is freely available from GitHub.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Fúngicas/química , Glicósido Hidrolasas/genética , Filogenia , Análisis de Secuencia de Proteína/métodos , Algoritmos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Dominio Catalítico , Evolución Molecular , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Glicómica/métodos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación
10.
Proc Natl Acad Sci U S A ; 114(27): 7037-7042, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630303

RESUMEN

The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides, indicating that the model developed is of generic relevance to this important microbial community.


Asunto(s)
Bacteroides/enzimología , Microbioma Gastrointestinal , Glicosaminoglicanos/química , Bacteroides/genética , Calorimetría , Carbohidratos/química , Catálisis , Cristalografía por Rayos X , Citoplasma/enzimología , Carbohidratos de la Dieta , Heparina/química , Heparitina Sulfato/química , Humanos , Microscopía Fluorescente , Mutación , Oligosacáridos/química , Polisacárido Liasas/química , Polisacáridos/química , Sulfatasas/química , Azufre/química
11.
J Biol Chem ; 293(18): 6637-6646, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29535188

RESUMEN

Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45-47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD.


Asunto(s)
Distrofina/química , Distrofina/genética , Eliminación de Gen , Distrofia Muscular de Duchenne/genética , Sitios de Unión , Exones , Humanos , Simulación del Acoplamiento Molecular , Distrofia Muscular de Duchenne/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dominios Proteicos , Sistemas de Lectura , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
12.
Proteins ; 87(1): 34-40, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315603

RESUMEN

In the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10. The crystal structure has shown that agaro-octaose interacts via H-bonds and aromatic stacking along 7 subsites (L through R) of the SBS in the inactive catalytic nucleophile mutant AgaA-E147S. D271 is centrally located in the extended SBS where it forms H-bonds to galactose and 3,6-anhydrogalactose residues of agaro-octaose at subsites O and P. We propose D271 is a key residue in ligand binding to the SBS. Thus AgaA-E147S/D271A gave slightly decreasing KD values from 625 ± 118 to 468 ± 13 µM for agaro-hexaose, -octaose, and -decaose, which represent 3- to 4-fold reduced affinity compared with AgaA-E147S. Molecular dynamics simulations and interaction analyses of AgaA-E147S/D271A indicated disruption of an extended H-bond network supporting that D271 is critical for the functional SBS. Notably, neither AgaA-E147S/W87A nor AgaA-E147S/W277A, designed to eliminate stacking with galactose residues at subsites O and Q, respectively, were produced in soluble form. W87 and W277 may thus control correct folding and structural integrity of AgaA.


Asunto(s)
Ácido Aspártico/metabolismo , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Sefarosa/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Especificidad por Sustrato
14.
Biochem J ; 475(22): 3609-3628, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30341165

RESUMEN

Cell walls of marine macroalgae are composed of diverse polysaccharides that provide abundant carbon sources for marine heterotrophic bacteria. Among them, Zobellia galactanivorans is considered as a model for studying algae-bacteria interactions. The degradation of typical algal polysaccharides, such as agars or alginate, has been intensively studied in this model bacterium, but the catabolism of plant-like polysaccharides is essentially uncharacterized. Here, we identify a polysaccharide utilization locus in the genome of Z. galactanivorans, induced by laminarin (ß-1,3-glucans), and containing a putative GH5 subfamily 4 (GH5_4) enzyme, currently annotated as a endoglucanase (ZgEngAGH5_4). A phylogenetic analysis indicates that ZgEngAGH5_4 was laterally acquired from an ancestral Actinobacteria We performed the biochemical and structural characterization of ZgEngAGH5_4 and demonstrated that this GH5 is, in fact, an endo-ß-glucanase, most active on mixed-linked glucan (MLG). Although ZgEngAGH5_4 and GH16 lichenases both hydrolyze MLG, these two types of enzymes release different series of oligosaccharides. Structural analyses of ZgEngAGH5_4 reveal that all the amino acid residues involved in the catalytic triad and in the negative glucose-binding subsites are conserved, when compared with the closest relative, the cellulase EngD from Clostridium cellulovorans, and some other GH5s. In contrast, the positive glucose-binding subsites of ZgEngAGH5_4 are different and this could explain the preference for MLG, with respect to cellulose or laminarin. Molecular dynamics computer simulations using different hexaoses reveal that the specificity for MLG occurs through the +1 and +2 subsites of the binding pocket that display the most important differences when compared with the structures of other GH5_4 enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Flavobacteriaceae/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/genética , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Filogenia , Conformación Proteica , Agua de Mar/microbiología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
15.
J Biol Chem ; 292(48): 19919-19934, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030427

RESUMEN

Carrageenans are sulfated α-1,3-ß-1,4-galactans found in the cell wall of some red algae that are practically valuable for their gelation and biomimetic properties but also serve as a potential carbon source for marine bacteria. Carbohydrate degradation has been studied extensively for terrestrial plant/bacterial systems, but sulfation is not present in these cases, meaning the marine enzymes used to degrade carrageenans must possess unique features to recognize these modifications. To gain insights into these features, we have focused on κ-carrageenases from two distant bacterial phyla, which belong to glycoside hydrolase family 16 and cleave the ß-1,4 linkage of κ-carrageenan. We have solved the crystal structure of the catalytic module of ZgCgkA from Zobellia galactanivorans at 1.66 Å resolution and compared it with the only other structure available, that of PcCgkA from Pseudoalteromonas carrageenovora 9T (ATCC 43555T). We also describe the first substrate complex in the inactivated mutant form of PcCgkA at 1.7 Å resolution. The structural and biochemical comparison of these enzymes suggests key determinants that underlie the functional properties of this subfamily. In particular, we identified several arginine residues that interact with the polyanionic substrate, and confirmed the functional relevance of these amino acids using a targeted mutagenesis strategy. These results give new insight into the diversity of the κ-carrageenase subfamily. The phylogenetic analyses show the presence of several distinct clades of enzymes that relate to differences in modes of action or subtle differences within the same substrate specificity, matching the hybrid character of the κ-carrageenan polymer.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Biología Marina , Pseudoalteromonas/enzimología , Catálisis , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación , Cinética , Filogenia , Conformación Proteica , Especificidad por Sustrato
16.
Photosynth Res ; 138(1): 57-71, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29938315

RESUMEN

The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.


Asunto(s)
Proteínas Bacterianas/fisiología , Cianobacterias/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clorofila/metabolismo , Cianobacterias/genética , Citometría de Flujo , Genoma Bacteriano , Luz , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética
17.
Nature ; 544(7648): 45-46, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28329754

Asunto(s)
Bioquímica , Vino , Humanos
18.
Int J Syst Evol Microbiol ; 67(7): 2242-2247, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28671532

RESUMEN

A novel bacterial strain, S66T, was isolated from eelgrass collected on the coastline of Zealand, Denmark. Polyphasic analyses involving phenotypic, phylogenetic and genomic methods were used to characterize strain S66T. The strain was Gram-reaction-negative, rod-shaped, aerobic, and displayed growth at 10-25 °C (optimum 20-25 °C) and at pH 7-9 (optimum pH 7.5). Furthermore, strain S66T grew on seaweed polysaccharides agar, agarose, porphyran, κ-carrageenan, alginate and laminarin as sole carbon sources. Major fatty acids were C16 : 0, C16 : 1ω7c and C18 : 1ω7c. The respiratory quinone was determined to be Q-8, and major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was determined to be 42.2 mol%. Phylogenetic analyses based on the 16S rRNA gene and GyrB sequence comparisons showed that the bacterium was affiliated with the genus Paraglaciecola within the family Alteromonadaceae of the class Gammaproteobacteria. The percentage similarity between the 16S rRNA gene and GyrB sequences of strain S66T and other members of the genus Paraglaciecola were 94-95 % and 84-85 %, respectively. Based on the genome sequence of S66T, the average nucleotide identity (ANI) between strain S66T and other members of the genus Paraglaciecola was 77-80 %, and DNA-DNA hybridization prediction showed values of less than 24 % relatedness, respectively, between S66T and other species of the genus Paraglaciecola. The phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S66T represents a novel species of the genus Paraglaciecola, for which the name Paraglaciecola hydrolytica sp. nov. is proposed. The type strain is S66T (=LMG 29457T=NCIMB 15060T=DSM 102834T).


Asunto(s)
Alteromonadaceae/clasificación , Filogenia , Polisacáridos/química , Algas Marinas/química , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Dinamarca , Ácidos Grasos/química , Genes Bacterianos , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
19.
Glycobiology ; 26(9): 973-983, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27026155

RESUMEN

Mannuronan C5-epimerases (ManC5-Es) catalyze in brown algae the remodeling of alginate, a major cell-wall component which is involved in many biological functions in these organisms. ManC5-Es are present as large multigenic families in brown algae, likely indicating functional specificities and specializations. ManC5-Es control the distribution pattern of (1-4) linked ß-d-mannuronic acid (M) and α-l-guluronic acid (G) residues in alginates, giving rise to widely different polysaccharide compositions and sequences, depending on tissue, season, age, or algal species. As such they are also a source of powerful new tools for the biotechnological and enzymatic processing of alginates, to match the growing interest for food hydrocolloids and in biomedical and nanotechnological applications. We report here the first heterologous production of a ManC5-E of brown algal origin that is successfully refolded in an active form. The activity was measured by 1H NMR and by an indirect enzymatic assay using a known bacterial alginate lyase. The transcript expression as a function of the developmental program of the brown alga Ectocarpus, together with the bioinformatic analyses of the corresponding gene context of this multigenic family, is also presented.


Asunto(s)
Carbohidrato Epimerasas/química , Pared Celular/enzimología , Phaeophyceae/enzimología , Polisacáridos/biosíntesis , Alginatos/metabolismo , Secuencia de Aminoácidos , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Pared Celular/química , Pared Celular/genética , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Espectroscopía de Resonancia Magnética , Phaeophyceae/genética , Polisacáridos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Environ Microbiol ; 18(12): 4610-4627, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27768819

RESUMEN

The marine flavobacterium Zobellia galactanivorans DsijT was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Flavobacteriaceae/metabolismo , Ecosistema , Flavobacteriaceae/genética , Genoma Bacteriano , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA