RESUMEN
Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.
Asunto(s)
Adipocitos , Dieta Alta en Grasa , Hígado Graso , Glucosafosfato Deshidrogenasa , Hipertrofia , Obesidad , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Masculino , Ratas , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Ratas Sprague-Dawley , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patologíaRESUMEN
DNA methylation potentially contributes to the pathogenesis of pulmonary hypertension (PH). However, the role of DNA methyltransferases (DNMTs: 1, 3a, and 3b), the epigenetic writers, in modulating DNA methylation observed in PH remains elusive. Our objective was to determine DNMT activity and expression in the lungs of experimental rat models of PH. Because the activity of DNMTs is metabolically driven, another objective was to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in regulating DNMT expression and activity in the lungs of novel loss-of-function Mediterranean G6PD variant (G6PDS188F) rats. As outlined for modeling PH, rats injected with sugen5416 (SU) were placed in a hypoxia (Hx) chamber set at 10% oxygen for 3 weeks and then returned to normoxia (Nx) for 5 weeks (SU/Hx/Nx). Rats kept in atmospheric oxygen and treated with SU were used as controls. We assessed the activity and expression of DNMTs in the lungs of rats exposed to SU/Hx/Nx. WT rats exposed to SU/Hx/Nx developed hypertension and exhibited increased DNMT activity and Dnmt1 and Dnmt3b expression. In G6PDS188F rats, which developed less of a SU/Hx/Nx-induced increase in right ventricle pressure and hypertrophy than WT rats, we observed a diminished increase in expression and activity of DNMTs, DNA hypomethylation, increased histone acetylation and methylation, and increased expression of genes encoding NOS3 and SOD2-vascular-protective proteins. Collectively, increased DNMTs contribute to reduced expression of protective genes and to the pathogenesis of SU/Hx/Nx-induced experimental PH. Notably, G6PD regulates the expression of DNMTs and protective proteins in the lungs of hypertensive rats.
Asunto(s)
Metilasas de Modificación del ADN , Regulación Enzimológica de la Expresión Génica , Glucosafosfato Deshidrogenasa , Hipertensión Pulmonar , Animales , Ratas , Metilación de ADN , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Hipertensión Pulmonar/genética , Oxígeno , Hipoxia de la Célula , Metilasas de Modificación del ADN/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Modelos Animales de EnfermedadRESUMEN
RATIONALE: Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS: To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS: Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION: These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.
Asunto(s)
Hipertensión Pulmonar , Humanos , Ratones , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Arteria Pulmonar , Ligandos , Células Cultivadas , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Oxígeno/metabolismo , Ratones NoqueadosRESUMEN
The loss of ten-eleven translocation (TET2) methylcytosine dioxygenase expression contributes to the pathobiology of pulmonary arterial hypertension (PAH). However, whether the expression and activity of other TETs and DNA methyltransferases (DNMTs) are altered in PAH remains enigmatic. Therefore, our objective was to determine the expression of DNMT (1, 3a, and 3b) and TET (1, 2, and 3) and their total activity. We assessed the expression of DNMT and TET enzymes in the leukocytes and their activity in extracellular vesicles (EVs). Expression of DNMT (1, 3a, and 3b), TET (2 and 3) in leukocytes, and total activity in EVs, from PAH patients was higher than in healthy controls. Additionally, we noticed there were difference in expression of these epigenetic enzyme based on ethnicity and found higher DNMT1 and lower TET2/TET3 expression in Caucasian than Hispanic/African American (combine) patients. Since loss-of-function mutation(s) and down-regulation of TET enzymes are associated with hematological malignancies and cytokine production, we determined the expression of genes that encode cytokines in samples of Caucasian and Hispanic/African American patients. Expression of IL6, CSF2, and CCL5 genes were higher in the leukocytes of Caucasian than Hispanic/African American patients, and CSF2 and CCL5 negatively correlated with the decreased expression of TET3. Interestingly, the expression of gene encoding CD34, a marker of myeloid and lymphoid precursor cells, and CD163, a monocyte/macrophage protein, was higher in the leukocytes of Caucasian than Hispanic/African American patients. Furthermore, Hispanic/African American patients having higher TET2/TET3 expression had higher pulmonary capillary wedge pressure. In conclusion, our results revealed higher DNMT1 and lower TET2/TET3 in Caucasian than Hispanic/African American patients together potentially augmented genes encoding inflammation causing cytokines, and CD34+ -derived immunogenic cells, and the severity of PAH.