RESUMEN
Heretofore only observed in living systems, we report that weak-field ion cyclotron resonance (ICR) also occurs in inanimate matter. Weak magnetic field (50 nT) hydronium ICR at the field combination (7.84 Hz, 7.5 µT) markedly changes water structure, as evidenced by finding an altered index of refraction exactly at this combined field. This observation utilizes a novel technique which measures the scattering of a He-Ne laser beam as the sample is exposed to a ramped magnetic field frequency. In addition to the hydronium resonance, we find evidence of ICR coupling to a more massive structure, possibly a tetrahedral combination of three waters and a single hydronium ion. To check our observations, we extended this technique to D2O, successfully predicting the specific ICR charge-to-mass ratio for D3O+ that alters the index of refraction.
Asunto(s)
Ciclotrones , Compuestos Onio/química , Refractometría/instrumentación , Agua/química , Óxido de Deuterio/química , Campos Magnéticos , VibraciónRESUMEN
There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O(+). Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5 Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudice's model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states.
Asunto(s)
Ciclotrones , Compuestos Onio/química , Agua/química , Campos Electromagnéticos , Hidrógeno/química , Concentración de Iones de Hidrógeno , Iones , Temperatura , Factores de Tiempo , VibraciónRESUMEN
Investigations into the ion cyclotronic resonance (ICR) in living matter confront the so called Zhadin effect (12), whose explanation is not fully achieved. Several attempts have been done to explain this phenomenon, the most interesting of which is based on Quantum Electrodynamics (18): the molecules of water, the ions and the biomolecules form extended mesoscopic regions, called Coherence Domains (CD), where they oscillate in unison between two selected levels of their spectra in tune with a self-produced coherent E.M. field having a well defined frequency, dynamically trapped within the CD. Moreover, it is possible, to induce, by an external applied field (either hydrodynamical or EM) or also by a chemical stimulation, coherent excitations of CD's that give rise to electric currents circulating without friction within the CD's: as a consequence magnetic fields are produced. A resonating magnetic field thus is able to extract the ions from the orbit and push them in the flowing current. Electrochemical investigation of the system suggested that the observed phenomenon involves the transitory activation of the anode due to ICR, followed by anode passivation due to the adsorption of amino acid and its oxidation products (18). This hypothesis induced us to investigate an alternate configuration of the experiment, removing the electrolytic cell and submitting a flask containing the solution into a condenser to be exposed to the proper ICR. Temperature and variable parameters involved in the effect have been investigated in order to overcome the randomness of the effect.
RESUMEN
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.