Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7817): 603-608, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641832

RESUMEN

Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.


Asunto(s)
Astrocitos/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Mitocondrias/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Células Cultivadas , Dronabinol/farmacología , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB1/agonistas , Conducta Social
2.
Brain ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964748

RESUMEN

Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.

3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782470

RESUMEN

Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.


Asunto(s)
Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Vibrisas/fisiología , Animales , Astrocitos/metabolismo , Aprendizaje , Espectroscopía de Resonancia Magnética , Masculino , Memoria , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuronas/metabolismo , Saturación de Oxígeno , Ratas , Ratas Wistar
4.
Mol Ther ; 30(2): 782-797, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563677

RESUMEN

Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (brain-derived enriched EVs [BD-EVs]). These latter were isolated from different brain regions in various tauopathies, and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Gene Ther ; 28(1-2): 75-88, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32632267

RESUMEN

Gene transfer is a widely developed technique for studying and treating genetic diseases. However, the development of therapeutic strategies is challenging, due to the cellular and functional complexity of the central nervous system (CNS), its large size and restricted access. We explored two parameters for improving gene transfer efficacy and capacity for the selective targeting of subpopulations of cells with lentiviral vectors (LVs). We first developed a second-generation LV specifically targeting astrocytes for the efficient expression or silencing of genes of interest, and to better study the importance of cell subpopulations in neurological disorders. We then made use of the retrograde transport properties of a chimeric envelope to target brain circuits affected in CNS diseases and achieve a broad distribution. The combination of retrograde transport and specific tropism displayed by this LV provides opportunities for delivering therapeutic genes to specific cell populations and ensuring high levels of transduction in interconnected brain areas following local administration. This new LV and delivery strategy should be of greater therapeutic benefit and opens up new possibilities for the preclinical development of gene therapy for neurodegenerative diseases.


Asunto(s)
Vectores Genéticos , Lentivirus , Sistema Nervioso Central , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Lentivirus/genética , Transducción Genética
6.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127471

RESUMEN

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Dopamina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Dopamina/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
7.
Glia ; 68(9): 1692-1728, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31958188

RESUMEN

Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.


Asunto(s)
Astrocitos , Neuroglía , Humanos , Microglía , Neuronas , Oligodendroglía
8.
Neurobiol Dis ; 134: 104614, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31605779

RESUMEN

The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.


Asunto(s)
Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Degeneración Nerviosa/genética , Enfermedad de Parkinson , Dominios Proteicos/genética , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus , Masculino , Mutación , Degeneración Nerviosa/patología , Porción Compacta de la Sustancia Negra , Ratas , Ratas Sprague-Dawley
9.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534157

RESUMEN

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Asunto(s)
Cuerpo Estriado/enzimología , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas Similares a Doblecortina , Regulación hacia Abajo/genética , Complejo IV de Transporte de Electrones/metabolismo , Fuerza de la Mano/fisiología , Enfermedad de Huntington/genética , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cereb Cortex ; 28(11): 3976-3993, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29048465

RESUMEN

The treatment of Alzheimer's disease (AD) remains challenging and requires a better in depth understanding of AD progression. Particularly, the link between amyloid protein precursor (APP) processing and Tau pathology development remains poorly understood. Growing evidences suggest that APP processing and amyloid-ß (Aß) release are upstream of Tau pathology but the lack of animal models mimicking the slow progression of human AD raised questions around this mechanism. Here, we described that an AD-like ßAPP processing in adults wild-type rats, yielding to human APP, ßCTF and Aß levels similar to those observed in AD patients, is sufficient to trigger gradual Tauopathy. The Tau hyperphosphorylation begins several months before the formation of both amyloid plaques and tangle-like aggregates in aged rats and without associated inflammation. Based on a longitudinal characterization over 30 months, we showed that extrasynaptic and emotional impairments appear before long-term potentiation deficits and memory decline and so before Aß and Tau aggregations. These compelling data allowed us to (1) experimentally confirm the causal relationship between ßAPP processing and Tau pathology in vivo and without Tau transgene overexpression, (2) support the amyloidogenic cascade and (3) propose a 4-step hypothesis of prodromal AD progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Animales , Progresión de la Enfermedad , Femenino , Vectores Genéticos , Humanos , Potenciación a Largo Plazo , Masculino , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/genética , Agregación Patológica de Proteínas/metabolismo , Ratas Wistar
11.
Hum Mol Genet ; 25(6): 1043-58, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681807

RESUMEN

The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Encéfalo/metabolismo , Caenorhabditis elegans , Muerte Celular/fisiología , Cuerpo Estriado/enzimología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neostriado/metabolismo , Neuronas/metabolismo , Fosforilación , Ribonucleósidos/farmacología
13.
Hum Mol Genet ; 24(6): 1563-73, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25398949

RESUMEN

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.


Asunto(s)
Cuerpo Estriado/patología , Cristalinas/genética , Enfermedad de Huntington/patología , Proteínas del Tejido Nervioso/genética , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Macaca , Masculino , Ratones , Ratones Transgénicos , Mutación , Ratas , Cristalinas mu
14.
Eur J Neurosci ; 45(1): 198-206, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717053

RESUMEN

Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Neostriado/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Dopamina/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
15.
J Neurosci ; 35(6): 2817-29, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673868

RESUMEN

Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Astrocitos , Enfermedad de Huntington/fisiopatología , Quinasas Janus , Factor de Transcripción STAT3 , Transducción de Señal , Enfermedad de Alzheimer/patología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Enfermedad de Huntington/patología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética
16.
Glia ; 64(11): 1841-56, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27442486

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease in which an early and selective vulnerability of striatal Spiny Projection Neurons is observed. However, several studies have highlighted the implication of glial cells, and in particular astrocytes, in the pathophysiological mechanisms of this disease. A better understanding of the respective contributions of neurons and astrocytes in HD is needed and would be important for the development of new therapeutic approaches. Today, no comparable in vivo models expressing the mutant HTT selectively in astrocytes or in neurons are available. In this study, we developed comparable cell-type specific mouse models expressing a fragment of Huntingtin specifically in neurons, astrocytes, or in both cell populations of the adult mouse basal ganglia circuit. This approach allowed us to characterize behavioral alterations occurring as soon as 4 weeks postinjection. Interestingly, less severe but significant behavioral alterations were also observed in the two cell-type specific models. We further showed that astrocytes are less affected by mHTT compared to neurons, in particular concerning mHTT aggregation. Additionally, a more indirect contribution of astrocytes compared to neurons was observed in several pathophysiological mechanisms such as astrogliosis and neuronal dysfunction. Finally, we showed that direct and indirect transcriptional alterations within the glial glutamatergic clearing system are caused by astrocytic and neuronal expression of mHTT, respectively. We anticipate that our study will help to better understand the contributions of astrocytes to HD and guide future therapeutic efforts. GLIA 2016;64:1841-1856.


Asunto(s)
Astrocitos/patología , Encéfalo/patología , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/patología , Animales , Astrocitos/metabolismo , Ciclofilina A/metabolismo , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Locomoción/genética , Locomoción/fisiología , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo
17.
Hum Mol Genet ; 22(19): 3869-82, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23720495

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron-Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment.


Asunto(s)
Cuerpo Estriado/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mutantes/metabolismo , Mutación , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Med Sci (Paris) ; 31(2): 159-67, 2015 Feb.
Artículo en Francés | MEDLINE | ID: mdl-25744262

RESUMEN

Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.


Asunto(s)
Silenciador del Gen , Terapia Genética/métodos , Enfermedad de Huntington/terapia , Alelos , Animales , Barrera Hematoencefálica , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Vectores Genéticos/uso terapéutico , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Inyecciones Intraventriculares , Lentivirus/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/uso terapéutico , Polimorfismo de Nucleótido Simple , Agregado de Proteínas , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/prevención & control , ARN Mensajero/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Expansión de Repetición de Trinucleótido/genética
19.
Hum Mol Genet ; 21(17): 3883-95, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22678061

RESUMEN

Huntington's disease (HD) is characterized by a late clinical onset despite ubiquitous expression of the mutant gene at all developmental stages. How mutant huntingtin impacts on signalling pathways in the pre-symptomatic period has remained essentially unexplored in humans due to a lack of appropriate models. Using multiple human embryonic stem cell lines derived from blastocysts diagnosed as carrying the mutant huntingtin gene by pre-implantation genetic diagnosis, we explored early developmental changes in gene expression using differential transcriptomics, combined with gain and loss of function strategies. We demonstrated a down-regulation of the HTT gene itself in HD neural cells and identified three genes, the expression of which differs significantly in HD cells when compared with wild-type controls, namely CHCHD2, TRIM4 and PKIB. Similar dysregulation had been observed previously for CHCDH2 and TRIM4 in blood cells from patients. CHCHD2 is involved in mitochondrial function and PKIB in protein kinase A-dependent pathway regulation, which suggests that these functions may be precociously impacted in HD.


Asunto(s)
Células Madre Embrionarias/metabolismo , Enfermedad de Huntington/genética , Mutación/genética , Neuronas/metabolismo , Transcripción Genética , Transcriptoma/genética , Línea Celular , Células Madre Embrionarias/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/patología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Brain ; 136(Pt 7): 2173-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23801739

RESUMEN

Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/uso terapéutico , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/genética , Ataxina-3 , Autofagia/genética , Beclina-1 , Células Cultivadas , Cerebelo/citología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Enfermedad de Machado-Joseph/complicaciones , Enfermedad de Machado-Joseph/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Degeneración Nerviosa/etiología , Degeneración Nerviosa/prevención & control , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/genética , Equilibrio Postural/genética , Desempeño Psicomotor/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trastornos de la Sensación/etiología , Trastornos de la Sensación/genética , Trastornos de la Sensación/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA