Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 297: 120732, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004408

RESUMEN

Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.


Asunto(s)
Imagen por Resonancia Magnética , Núcleos Talámicos , Humanos , Adulto , Femenino , Masculino , Núcleos Talámicos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Recién Nacido , Recien Nacido Extremadamente Prematuro , Recién Nacido de muy Bajo Peso
2.
Brain Cogn ; 177: 106156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613926

RESUMEN

Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.


Asunto(s)
Cognición , Ejercicio Físico , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Adulto , Ejercicio Físico/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Cognición/fisiología , Adulto Joven , Atención/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Descanso/fisiología
3.
Alzheimers Dement ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072956

RESUMEN

INTRODUCTION: Subjective cognitive decline (SCD) in amyloid-positive (Aß+) individuals was proposed as a clinical indicator of Stage 2 in the Alzheimer's disease (AD) continuum, but this requires further validation across cultures, measures, and recruitment strategies. METHODS: Eight hundred twenty-one participants from SILCODE and DELCODE cohorts, including normal controls (NC) and individuals with SCD recruited from the community or from memory clinics, underwent neuropsychological assessments over up to 6 years. Amyloid positivity was derived from positron emission tomography or plasma biomarkers. Global cognitive change was analyzed using linear mixed-effects models. RESULTS: In the combined and stratified cohorts, Aß+ participants with SCD showed steeper cognitive decline or diminished practice effects compared with NC or Aß- participants with SCD. These findings were confirmed using different operationalizations of SCD and amyloid positivity, and across different SCD recruitment settings. DISCUSSION: Aß+ individuals with SCD in German and Chinese populations showed greater global cognitive decline and could be targeted for interventional trials. HIGHLIGHTS: SCD in amyloid-positive (Aß+) participants predicts a steeper cognitive decline. This finding does not rely on specific SCD or amyloid operationalization. This finding is not specific to SCD patients recruited from memory clinics. This finding is valid in both German and Chinese populations. Aß+ older adults with SCD could be a target population for interventional trials.

4.
Hum Brain Mapp ; 44(15): 5125-5138, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37608591

RESUMEN

While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.


Asunto(s)
Cognición , Dopamina , Imágenes Dopaminérgicas , Recien Nacido Extremadamente Prematuro , Nacimiento Prematuro , Transmisión Sináptica , Dopamina/fisiología , Nacimiento Prematuro/diagnóstico por imagen , Nacimiento Prematuro/psicología , Humanos , Masculino , Femenino , Lactante , Adulto Joven , Imagen por Resonancia Magnética , Saturación de Oxígeno , Pruebas de Inteligencia
5.
Alzheimers Dement ; 19(2): 487-497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35451563

RESUMEN

INTRODUCTION: It is uncertain whether subjective cognitive decline (SCD) in individuals who seek medical help serves the identification of the initial symptomatic stage 2 of the Alzheimer's disease (AD) continuum. METHODS: Cross-sectional and longitudinal data from the multicenter, memory clinic-based DELCODE study. RESULTS: The SCD group showed slightly worse cognition as well as more subtle functional and behavioral symptoms than the control group (CO). SCD-A+ cases (39.3% of all SCD) showed greater hippocampal atrophy, lower cognitive and functional performance, and more behavioral symptoms than CO-A+. Amyloid concentration in the CSF had a greater effect on longitudinal cognitive decline in SCD than in the CO group. DISCUSSION: Our data suggests that SCD serves the identification of stage 2 of the AD continuum and that stage 2, operationalized as SCD-A+, is associated with subtle, but extended impact of AD pathology in terms of neurodegeneration, symptoms and clinical progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Cognición , Biomarcadores , Proteínas tau
6.
Alzheimers Dement ; 19(11): 4922-4934, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37070734

RESUMEN

INTRODUCTION: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS: Cross-sectional resting-state functional magnetic resonance imaging connectivity (FC) and amyloid-positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS: Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD-plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC-amyloid associations across cohorts. DISCUSSION: Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture-specific features to enrich preclinical Alzheimer's disease in non-Western populations. HIGHLIGHTS: Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross-cultural harmonization of SCD regarding Alzheimer's disease pathology is required.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Estudios Transversales , Pueblos del Este de Asia , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
7.
Cereb Cortex ; 31(12): 5549-5559, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171095

RESUMEN

Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.


Asunto(s)
Claustro , Nacimiento Prematuro , Sustancia Blanca , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Recién Nacido de muy Bajo Peso/fisiología , Imagen por Resonancia Magnética , Embarazo , Nacimiento Prematuro/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
8.
Neuroimage ; 208: 116438, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811902

RESUMEN

Premature birth bears an increased risk for aberrant brain development concerning its structure and function. Cortical complexity (CC) expresses the fractal dimension of the brain surface and changes during neurodevelopment. We hypothesized that CC is altered after premature birth and associated with long-term cognitive development. One-hundred-and-one very premature-born adults (gestational age <32 weeks and/or birth weight <1500 â€‹g) and 111 term-born adults were assessed by structural MRI and cognitive testing at 26 years of age. CC was measured based on MRI by vertex-wise estimation of fractal dimension. Cognitive performance was measured based on Griffiths-Mental-Development-Scale (at 20 months) and Wechsler-Adult-Intelligence-Scales (at 26 years). In premature-born adults, CC was decreased bilaterally in large lateral temporal and medial parietal clusters. Decreased CC was associated with lower gestational age and birth weight. Furthermore, decreased CC in the medial parietal cortices was linked with reduced full-scale IQ of premature-born adults and mediated the association between cognitive development at 20 months and IQ in adulthood. Results demonstrate that CC is reduced in very premature-born adults in temporoparietal cortices, mediating the impact of prematurity on impaired cognitive development. These data indicate functionally relevant long-term alterations in the brain's basic geometry of cortical organization in prematurity.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Humano/fisiología , Recien Nacido Prematuro/crecimiento & desarrollo , Inteligencia/fisiología , Adulto , Peso al Nacer/fisiología , Corteza Cerebral/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Fractales , Edad Gestacional , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Escalas de Wechsler
9.
Hum Brain Mapp ; 41(18): 5215-5227, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845045

RESUMEN

Reduced global hippocampus volumes have been demonstrated in premature-born individuals, from newborns to adults; however, it is unknown whether hippocampus subfield (HCSF) volumes are differentially affected by premature birth and how relevant they are for cognitive performance. To address these questions, we investigated magnetic resonance imaging (MRI)-derived HCSF volumes in very premature-born adults, and related them with general cognitive performance in adulthood. We assessed 103 very premature-born (gestational age [GA] <32 weeks and/or birth weight <1,500 g) and 109 term-born individuals with cognitive testing and structural MRI at 26 years of age. HCSFs were automatically segmented based on three-dimensional T1- and T2-weighted sequences and studied both individually and grouped into three functional units, namely hippocampus proper (HP), subicular complex (SC), and dentate gyrus (DG). Cognitive performance was measured using the Wechsler-Adult-Intelligence-Scale (full-scale intelligence quotient [FS-IQ]) at 26 years. We observed bilateral volume reductions for almost all HCSF volumes in premature-born adults and associations with GA and neonatal treatment intensity but not birth weight. Left-sided HP, SC, and DG volumes were associated with adult FS-IQ. Furthermore, left DG volume was a mediator of the association between GA and adult FS-IQ in premature-born individuals. Results demonstrate nonspecifically reduced HCSF volumes in premature-born adults; but specific associations with cognitive outcome highlight the importance of the left DG. Data suggest that specific interventions toward hippocampus function might be promising to lower adverse cognitive effects of prematurity.


Asunto(s)
Peso al Nacer/fisiología , Lateralidad Funcional/fisiología , Hipocampo/anatomía & histología , Recién Nacido de Bajo Peso/fisiología , Recien Nacido Prematuro/fisiología , Inteligencia/fisiología , Adulto , Giro Dentado/anatomía & histología , Giro Dentado/diagnóstico por imagen , Femenino , Edad Gestacional , Hipocampo/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador , Recien Nacido Extremadamente Prematuro/fisiología , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Escalas de Wechsler
10.
Hum Brain Mapp ; 41(17): 4952-4963, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32820839

RESUMEN

Cortical thickness (CTh) reflects cortical properties such as dendritic complexity and synaptic density, which are not only vulnerable to developmental disturbances caused by premature birth but also highly relevant for cognitive performance. We tested the hypotheses whether CTh in young adults is altered after premature birth and whether these aberrations are relevant for general cognitive abilities. We investigated CTh based on brain structural magnetic resonance imaging and surface-based morphometry in a large and prospectively collected cohort of 101 very premature-born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and 111 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. CTh was reduced in frontal, parietal, and temporal associative cortices predominantly in the left hemisphere in premature-born adults compared to controls. We found a significant positive association of CTh with both gestational age and BW, particularly in the left hemisphere, and a significant negative association between CTh and intensity of neonatal treatment within limited regions bilaterally. Full-scale IQ and CTh in the left hemisphere were positively correlated. Furthermore, CTh in the left hemisphere acted as a mediator on the association between premature birth and full-scale IQ. Results provide evidence that premature born adults have widespread reduced CTh that is relevant for their general cognitive performance. Data suggest lasting reductions in cortical microstructure subserving CTh after premature birth.


Asunto(s)
Peso al Nacer/fisiología , Corteza Cerebral/patología , Cognición/fisiología , Recien Nacido Prematuro/fisiología , Inteligencia/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Edad Gestacional , Humanos , Recien Nacido Extremadamente Prematuro/fisiología , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA