Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glia ; 72(5): 899-915, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288580

RESUMEN

Alzheimer's disease (AD) represents an urgent yet unmet challenge for modern society, calling for exploration of innovative targets and therapeutic approaches. Astrocytes, main homeostatic cells in the CNS, represent promising cell-target. Our aim was to investigate if deletion of the regulatory CaNB1 subunit of calcineurin in astrocytes could mitigate AD-related memory deficits, neuropathology, and neuroinflammation. We have generated two, acute and chronic, AD mouse models with astrocytic CaNB1 ablation (ACN-KO). In the former, we evaluated the ability of ß-amyloid oligomers (AßOs) to impair memory and activate glial cells once injected in the cerebral ventricle of conditional ACN-KO mice. Next, we generated a tamoxifen-inducible astrocyte-specific CaNB1 knock-out in 3xTg-AD mice (indACNKO-AD). CaNB1 was deleted, by tamoxifen injection, in 11.7-month-old 3xTg-AD mice for 4.4 months. Spatial memory was evaluated using the Barnes maze; ß-amyloid plaques burden, neurofibrillary tangle deposition, reactive gliosis, and neuroinflammation were also assessed. The acute model showed that ICV injected AßOs in 2-month-old wild type mice impaired recognition memory and fostered a pro-inflammatory microglia phenotype, whereas in ACN-KO mice, AßOs were inactive. In indACNKO-AD mice, 4.4 months after CaNB1 depletion, we found preservation of spatial memory and cognitive flexibility, abolishment of amyloidosis, and reduction of neurofibrillary tangles, gliosis, and neuroinflammation. Our results suggest that ACN is crucial for the development of cognitive impairment, AD neuropathology, and neuroinflammation. Astrocyte-specific CaNB1 deletion is beneficial for both the abolishment of AßO-mediated detrimental effects and treatment of ongoing AD-related pathology, hence representing an intriguing target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/patología , Astrocitos/patología , Calcineurina , Gliosis/patología , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Tamoxifeno/farmacología , Modelos Animales de Enfermedad , Ratones Transgénicos , Ratones Endogámicos C57BL
2.
Aging Cell ; : e14263, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961613

RESUMEN

Frailty is a geriatric, multi-dimensional syndrome that reflects multisystem physiological change and is a transversal measure of reduced resilience to negative events. It is characterized by weakness, frequent falls, cognitive decline, increased hospitalization and dead and represents a risk factor for the development of Alzheimer's disease (AD). The fact that frailty is recognized as a reversible condition encourages the identification of earlier biomarkers to timely predict and prevent its occurrence. SAMP8 (Senescence-Accelerated Mouse Prone-8) mice represent the most appropriate preclinical model to this aim and were used in this study to carry transcriptional and metabolic analyses in the brain and plasma, respectively, upon a characterization at cognitive, motor, structural, and neuropathological level at 2.5, 6, and 9 months of age. At 2.5 months, SAMP8 mice started displaying memory deficits, muscle weakness, and motor impairment. Functional alterations were associated with a neurodevelopmental deficiency associated with reduced neuronal density and glial cell loss. Through transcriptomics, we identified specific genetic signatures well distinguishing SAMP8 mice at 6 months, whereas plasma metabolomics allowed to segregate SAMP8 mice from SAMR1 already at 2.5 months of age by detecting constitutively lower levels of acylcarnitines and lipids in SAMP8 at all ages investigated correlating with functional deficits and neuropathological signs. Our findings suggest that specific genetic alterations at central level, as well as metabolomic changes in plasma, might allow to early assess a frail condition leading to dementia development, which paves the foundation for future investigation in a clinical setting.

3.
Parkinsonism Relat Disord ; 106: 105229, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462409

RESUMEN

BACKGROUND AND PURPOSE: Parkinson's disease remains orphan of valuable therapies capable to interfere with the disease pathogenesis despite the large number of symptomatic approaches adopted in clinical practice to manage this disease. Treatments simultaneously affecting α-synuclein (α-syn) oligomerization and neuroinflammation may counteract Parkinson's disease and related disorders. Recent data demonstrate that Doxycycline, a tetracycline antibiotic, can inhibit α-syn aggregation as well as neuroinflammation. We herein investigate, for the first time, the potential therapeutic properties of Doxy in a human α-syn A53T transgenic Parkinson's disease mouse model evaluating behavioural, biochemical and histopathological parameters. EXPERIMENTAL APPROACH: Human α-syn A53T transgenic mice were treated with Doxycycline (10 mg/kg daily ip) for 30 days. The effect of treatment on motor, cognitive and daily live activity performances were examined. Neuropathological and neurophysiological parameters were assessed through immunocytochemical, electrophysiological and biochemical analysis of cerebral tissue. KEY RESULTS: Doxy treatment abolished cognitive and daily life activity deficiencies in A53T mice. The effect on cognitive functions was associated with neuroprotection, inhibition of α-syn oligomerization and gliosis both in the cortex and hippocampus. Doxy treatment restored hippocampal long-term potentiation in association with the inhibition of pro-inflammatory cytokines expression. Moreover, Doxy ameliorated motor impairment and reduced striatal glial activation in A53T mice. CONCLUSIONS AND IMPLICATIONS: Our findings promote Doxy as a valuable multi-target therapeutic approach counteracting both symptoms and neuropathology in the complex scenario of α-synucleinopathies.


Asunto(s)
Doxiciclina , Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/tratamiento farmacológico , Reposicionamiento de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA