Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836563

RESUMEN

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Asunto(s)
Bosques , Nitrógeno , Fósforo , Suelo , Suelo/química , Nitrificación , Taiga , China , Incendios
2.
Environ Sci Technol ; 56(16): 11835-11844, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35905396

RESUMEN

Mercury (Hg) is a ubiquitous contaminant in the environment and its methylated form, methylmercury (MeHg), poses a worldwide health concern for humans and wildlife, primarily through fish consumption. Global production of forest fire ash, derived from wildfires and prescribed burns, is rapidly increasing due to a warming climate, but their interactions with aqueous and sedimentary Hg are poorly understood. Herein, we compared the differences of wildfire ash with activated carbon and biochar on the sorption of aqueous inorganic Hg and sedimentary Hg methylation. Sorption of aqueous inorganic Hg was greatest for wildfire ash materials (up to 0.21 µg g-1 or 2.2 µg g-1 C) among all of the solid sorbents evaluated. A similar Hg adsorption mechanism for activated carbon, biochar made of walnut, and wildfire ash was found that involves the formation of complexes between Hg and oxygen-containing functional groups, especially the -COO group. Notably, increasing dissolved organic matter from 2.4 to 70 mg C L-1 remarkably reduced Hg sorption (up to 40% reduction) and increased the time required to reach Hg-sorbent pseudo-equilibrium. Surprisingly, biochar and wildfire ash, but not activated carbon, stimulated MeHg production during anoxic sediment incubation, possibly due to the release of labile organic matter. Overall, our study indicates that while wildfire ash can sequester aqueous Hg, the leaching of its labile organic matter may promote production of toxic MeHg in anoxic sediments, which has an important implication for potential MeHg contamination in downstream aquatic ecosystems after wildfires.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Incendios Forestales , Animales , Ecosistema , Sedimentos Geológicos , Humanos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 56(17): 12678-12687, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35947441

RESUMEN

High-intensity wildfires alter the chemical composition of organic matter, which is expected to be distinctly different from low-intensity prescribed fires. Herein, we used pyrolysis gas chromatography/mass spectrometry (Py-GC/MS), in conjunction with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy, to assess chemical alterations from three wildfires and a long-term frequent prescribed fire site. Our results showed that black ash formed under moderate intensity burns contained less aromatic (ArH), polyaromatic hydrocarbon (PAH), and nitrogen-containing compounds (Ntg) but more lignin (LgC) and phenol compounds (PhC), compared to white ash formed under high intensity burns. Both 13C NMR and FT-IR confirmed a higher relative percentage of carboxyl carbon in white ash, indicating the potential for higher water solubility and more mobile carbon, relative to black ash. Compared to wildfires, ash from low-intensity prescribed fire contained less ArH, PAH, and Ntg and more LgC and PhC. Controlled laboratory burning trials indicated that organic matter alteration was sensitive to the burn temperature, but not related to the fuel type (pine vs fir) nor oxygen absence/presence at high burn temperatures. This study concludes that higher burn temperatures resulted in higher (poly)aromatic carbon/nitrogen and lower lignin/phenol compounds.


Asunto(s)
Quemaduras , Incendios , Carbono/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Lignina , Nitrógeno/análisis , Fenoles , Pirólisis , Espectroscopía Infrarroja por Transformada de Fourier
4.
World J Microbiol Biotechnol ; 38(4): 64, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226210

RESUMEN

Ammonia-oxidizing bacteria (AOB) attached to aquatic particles are important participants in ammonia oxidation within hypereutrophic urban river systems. To explore the effects of aquatic nitrogen pollution on particle-attached AOB in urban river, we utilized laboratory mesocosms to investigate the responses of abundances and community structure of particle-attached AOB to ammonium (NH4+) and glycine (C2H5NO2) amendments. The abundance and community structure of particle-attached AOB were determined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis and high-throughput sequencing based on the AOB amoA gene, respectively. Most of the bacterial amoA sequences from different treatments were affiliated with uncultured Nitrosomonadaceae bacterium, uncultured Nitrosomonadales bacterium, and uncultured Nitrosomonas sp., which are closely associated with organic pollution. The species richness and diversity of particle-attached AOB communities increased with increasing NH4+ and glycine concentrations. Treatment effects contributed significantly to the variance in particle-attached AOB communities. Although, glycine was completely transformed to ammonium within a few days and ammonium amendments would change the community structure of particle-attached AOB, the effect of glycine on the particle-attached AOB community was regulated by both the resulting ammonium concentration, as well as organic matter availability to the heterotrophic bacteria. Results suggested that high anthropogenic nitrogen loadings appeared to promote higher particle-attached AOB richness and diversity in the hypereutrophic urban river, but the effect of organic nitrogen on the particle-attached AOB community was different from the effect of inorganic nitrogen. This study informs ammonia oxidization mechanisms in the hypereutrophic urban rivers, which contributes to remediation/restoration strategies.


Asunto(s)
Amoníaco , Nitrógeno , Archaea/genética , Bacterias/genética , Agua Dulce , Humanos , Oxidación-Reducción , Filogenia
5.
Environ Sci Technol ; 55(20): 14305-14315, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34617741

RESUMEN

Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.


Asunto(s)
Cadmio , Suelo , Nitrificación , Nitrógeno/análisis , Microbiología del Suelo
6.
J Environ Manage ; 298: 113426, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343746

RESUMEN

Carbon (C) additions to soil interact through chemical and microbiological processes to cause changes in soil phosphorus (P) availability. However, the response of soil P transformations and relevant microbial communities to C additions having different degrees of recalcitrance remains uncertain. We studied the effects of glucose, hemicellulose and lignin addition on soil P availability, P transformation processes and relevant microbial activity and communities in a P-deficient flooded soil. Lignin significantly increased soil available P concentrations, which was attributed to chemical release of inorganic P and increased alkaline phosphatase activity. Glucose and hemicellulose additions stimulated microbial metabolism of C thereby enhancing microbial demand for P, with increased soil P availability especially in the early incubation period. Glucose or hemicellulose addition changed soil microbial diversity and community composition, leading to enhanced growth and interactions of P solubilizing microorganisms such as Desulfitobacterium, Bacillus and Desulfosporosinus. Our results infer the importance of pH alteration and competitive sorption between PO4 and functional groups of recalcitrant C (e.g., lignin) with Fe/Al (hydr) oxides in regulating soil P availability. Further, the microbial response to labile C additions led to increased P availability in the P-deficient soil. This study provides important mechanistic information to guide microbially-regulated soil P management in agricultural ecosystems.


Asunto(s)
Microbiota , Suelo , Carbono , Fósforo , Microbiología del Suelo
7.
J Environ Manage ; 290: 112674, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901819

RESUMEN

Nitrate is a prominent pollutant in surface and groundwater bodies worldwide. Isotopes in nitrate provide a powerful approach for tracing nitrate sources and transformations in waters. Given that analytical techniques for determining isotopic compositions are generally time-consuming, laborious and expensive, alternative methods are warranted to supplement and enhance existing approaches. Hence, we developed a support vector regression (SVR) model and explored its feasibility to predict nitrogen isotopic composition of nitrate (δ15N-NO3-) in a rural-urban river system in Southeastern China. A total of 16 easily obtained hydro-chemical variables were measured in the wet season (September 2019) and dry season (January 2020) and used to develop the SVR prediction model. The grading method utilized ~75% (35) of the samples for model building while the remaining 11 samples assessed model performance. Principal component analysis (PCA) extracted 7 principal components for SVR model inputs as PCA reduces superfluous variables. We optimized tuning parameters in the SVR model using a grid search technique coupled with V-fold cross-validation. The optimized SVR model provided accurate δ15N-NO3- predictions with a determination coefficient (R2) of 0.88, Nash-Sutcliffe (NS) of 0.87, and mean square error (MSE) of 0.53‰ in the testing step, and performed much better than the corresponding multivariate linear regression model (R2 = 0.60, NS = 0.58 and MSE = 1.76‰) and general regression neural network model (R2 = 0.66, NS = 0.65 and MSE = 1.45‰). Overall, the SVR model provides a potential indirect method to predict environmental isotope values for water quality management that will complement and enhance the interpretation of direct measurements of δ15N-NO3-.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
8.
Glob Chang Biol ; 26(9): 5267-5276, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32614503

RESUMEN

We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta-analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2 O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2 O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia-oxidizing archaea amoA gene, ammonia-oxidizing bacteria amoA and nirK genes. This study provides the first global-scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.


Asunto(s)
Nitrificación , Suelo , Archaea/genética , Desnitrificación , Ecosistema , Nitrógeno , Microbiología del Suelo , Temperatura
9.
Ecotoxicol Environ Saf ; 204: 111068, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32745784

RESUMEN

Herein, eight common endocrine disrupting chemicals (EDCs) were exposed to zebrafish (Danio rerio) to investigate the relationship between different EDCs and their activated estrogen receptors. Under acute exposure, we identified five major malformation types whose incidence and deformity modes differed among EDCs. Luciferase analysis divided the EDC receptors into four categories: (i) triclosan (TCS), 17ß-estradiol (E2) and estriol (E3) mainly activated GPER expression; (ii) bisphenol A (BPA), p-(tert-octyl) phenol (POP), 17α-ethynylestradiol (EE2), E2 and E3 activated ERß expression; (iii) E2 and E3 acted on both GPER and ERß; and (iv) estrone (E1) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF) had little effect on the two receptors. In vivo immunofluorescence experiments on 96-hpf larvae provided evidence that TCS and POP acted on GPER and ERß, respectively, while E2 acted on the two receptors simultaneously. Luciferase activities in the promoter regions of gper (-986 to -488) and erß (-1998 to -1496) were higher than those in other regions, identifying these key regions as targets for transcription activity. TCS promoted GPER expression by acting on the JUND transcription factor, while POP promoted ERß expression by activating the Foxl1 transcription factor. In contrast, E2 mainly regulated transcription of GPER and ERß by Arid3a. These findings provide compelling evidence that different EDCs possess varying estrogen receptors, leading to differential regulatory pathways and abnormality symptoms. These results offer an experimental strategy and fundamental information to assess the molecular mechanisms of EDC-induced estrogen effects.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Receptor beta de Estrógeno/metabolismo , Fenoles/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Compuestos de Bencidrilo/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Disruptores Endocrinos/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo
10.
Fish Shellfish Immunol ; 84: 1157-1169, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30423455

RESUMEN

The probiotics, Lactobacillus plantarum ST-III, plays an important role in modulating microbiota and alleviating intestinal metabolic disorders. Herein, we reported that Lactobacillus increases biodiversity of zebrafish gut flora, and attenuates toxic effects from chronic triclosan (TCS) exposure. Lactobacillus-feeding recovered the species and amount of microorganisms in the intestines of zebrafish, and inhibited toxin production by saprophytic bacterial growth. Abnormal physiological indexes and malonaldeyhde content resulting from TCS exposure were effectively alleviated. Additionally, lipid-metabolism disorders, such as increased triglyceride and total cholesterol levels, were attenuated by a probiotics diet. The number of CD4+ T cell lymphocytes in the lamina propria of the duodenal mucosa was decreased in zebrafish receiving a Lactobacillus diet compared to the TCS-exposed group, showing a consistent expression trend for six immune genes (NF-κB, IL-1ß, TNF-α, lysozyme, TLR4α, IL-10) in the intestinal mucosa. Histopathological observations of intestines, spleen and kidney showed that TCS exposure produced severe damage to the morphology and structure of immune and metabolism-related organs. Lactobacillus was capable of mitigating this damage, but bile salt hydrolase, an active extract of Lactobacillus, was not an effective mitigation strategy. The Lactobacillus-induced decrease in the number of inflammatory cells confirmed its role in preventing inflammatory injury. Three behavioral tests (T-maze, bottom dwelling and social interaction) indicated that a probiotics diet improved zebrafish movement and learning/memory capacity, effectively alleviating anxiety behavior due to TCS exposure. These findings inform development of beneficial strategies to alleviate intestinal metabolic syndromes and neurodegenerative diseases resulting from exposure to environmental contaminants through modifying gut flora with a probiotics diet.


Asunto(s)
Antibacterianos/efectos adversos , Lactobacillus plantarum/química , Probióticos/farmacología , Triclosán/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Alimentación Animal/análisis , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Intestinos/inmunología , Metabolismo de los Lípidos/efectos de los fármacos , Probióticos/química , Conducta Social , Natación
11.
J Basic Microbiol ; 59(5): 511-524, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900742

RESUMEN

To elucidate the importance and mechanisms of particle-attached microorganisms on ammonia oxidation, we conducted a controlled simulation experiment with samples collected from the Shunao River, an ammonia-rich hypereutrophic urban river in eastern China. The effects of particle concentration, ammonia concentration, organic carbon source and concentration, dissolved oxygen concentration, and pH were investigated on ammonia transformation rate (ammonia removal rate and NO2 - + NO3 - accumulation rate) and abundance of particle-attached ammonia-oxidizing bacteria (AOB) and archaea (AOA). All these factors significantly influenced ammonia transformation rates. Our results provided direct evidence that microorganisms attached on riverine suspended particles were associated with ammonia oxidation. Sequencing revealed that the AOA genus Nitrososphaera, and the AOB genus Nitrosomonas were the most dominant in particle-attached ammonia-oxidizing microbial communities. Further analysis showed that AOB communities had higher species richness and diversity compared with AOA communities. Additionally, AOB amoA genes were ~10-100 times more abundant than AOA amoA genes, and AOB abundance was more strongly correlated with ammonia transformation rates than AOA abundance in most experiments, indicating that particle-attached AOB were more important than AOA in the hypereutrophic urban river. This study adds to our knowledge of particle-attached microorganism oxidation of ammonia.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Material Particulado , Ríos/microbiología , Microbiología del Agua , Amoníaco/análisis , Archaea/clasificación , Archaea/genética , Proteínas Arqueales/genética , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Biodiversidad , Eutrofización , Microbiota , Oxidación-Reducción , Material Particulado/análisis , Filogenia , Ríos/química
12.
Environ Geochem Health ; 41(5): 2157-2168, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30852733

RESUMEN

Two wetland plant-sediment microbial fuel cell systems (PSM1 and PSM2) and one wetland sediment microbial fuel cell system (SM) were constructed to investigate their electricity production performance and the simultaneous migration and transformation of arsenic and heavy metals in sediment and overlying water, arsenic and heavy metals uptake by plants. The bioelectricity generation was monitored for 175 days, and sediment samples were collected at three time points (64, 125 and 200 days) for the analysis. The results showed that plants improved the efficiency of the electricity production by the fuel cell system. The average output voltage was: PSM1 (0.32 V) > PSM2 (0.28 V) > SM (0.24 V)(P ≤ 0.05).The electricity production of the electrodes and the introduction of plants affected the mobility and transformation of As, Zn and Cd in the sediment, which contributed to their stability in the sediment and reduced the release of these metals into the overlying water column. The bioelectricity production process affected the bioavailability of arsenic and heavy metals in the sediment and attenuated metal uptake by plants, which indicated the potential for remediation of arsenic and heavy metals pollution in sediment.


Asunto(s)
Arsénico/química , Fuentes de Energía Bioeléctrica , Metales Pesados/química , Contaminantes Químicos del Agua/química , Humedales , Arsénico/análisis , Electricidad , Sedimentos Geológicos/química , Metales Pesados/análisis , Plantas , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Technol ; 52(24): 14149-14157, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30516053

RESUMEN

Wildfires are expected to become more frequent and intensive at the global scale due to climate change. Many studies have focused on the loss of mercury (Hg) from burned forests; however, little is known about the origins, concentration, reactivity, and bioavailability of Hg in residual ash materials in postfire landscapes. We examine Hg levels and reactivity in black ash (BA, low burn intensity) and white ash (WA, high burn intensity) generated from two recent northern California wildfires and document that all ash samples contained measurable, but highly variable, Hg levels ranging from 4 to 125 ng/g dry wt. ( n = 28). Stable Hg isotopic compositions measured in select ash samples suggest that most Hg in wildfire ash is derived from vegetation. Ash samples had a highly variable fraction of Hg in recalcitrant forms (0-75%), and this recalcitrant Hg pool appears to be associated with the black carbon fraction in ash. Both BA and WA were found to strongly sequester aqueous inorganic Hg but not gaseous elemental Hg under controlled conditions. During anoxic ash incubation with natural surface water, we find that Hg in most ash samples had a minimal release and low methylation potential. Thus, the formation of wildfire ash can sequester Hg into relatively nonbioavailable forms, attenuating the potentially adverse effects of Hg erosion and transport to aquatic environments along with eroded wildfire ash.


Asunto(s)
Mercurio , Incendios Forestales , Disponibilidad Biológica , California , Bosques
14.
Anal Bioanal Chem ; 410(11): 2671-2687, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29511836

RESUMEN

This study developed a new effervescence-assisted switchable fatty acid-based microextraction combined with solidification of a floating organic-droplet (EA-SFAM-SFO) for simple and rapid determination of fluoroquinolones and tetracyclines in seawater, sediment, and seafood. Five medium-chain fatty acids (pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, and nonanoic acid) were tested as an extraction solvent, given their ability to change between hydrophobic and hydrophilic forms by pH adjustment. As nonanoic acid had the highest extraction recovery (>92%) for the six antibiotics and the ability to transform from liquid to a solidified floating state at low temperature, it was selected as the optimum extraction solvent. The prominent advantages of the newly developed method are: (1) reaction between the procedures salt and fatty acid changed extraction solvent from the hydrophobic to hydrophilic state; (2) bubbling with CO2 greatly increased the contact area between fatty acid and analytes resulting in improved extraction recovery; and (3) solidification of the fatty acid at a low temperature provided good separation and avoided the use of specialized equipment. Single-factor screening and optimization of the main factors were conducted using Plackett-Burman design and central composite design, respectively. The main parameters were optimized as follows: 258 µL fatty acid, 406 µL H2SO4 (98%), 3.9 min vortex time, and 354 µL Na2CO3 (2 mol L-1). Under optimized conditions, limits of detection were 0.007-0.113 µg L-1 or µg kg-1 and extraction recoveries were 82.2%-116.7% for six fluoroquinolone and tetracycline antibiotics in seawater, sediments, and seafood. The newly developed method combines the advantages of effervescence-assisted dispersion, hydrophobic/hydrophilic switchable solvent, and liquid/solid transition induced by low temperature. Overall, the new method is simple, quick, and environment-friendly with low detection limits and high recoveries. Thus, the newly developed method has excellent prospects for sample pretreatment and analysis of antibiotics in marine environmental and food samples. Graphical Abstract ᅟ.


Asunto(s)
Antibacterianos/análisis , Fluoroquinolonas/análisis , Sedimentos Geológicos/análisis , Alimentos Marinos/análisis , Agua de Mar/análisis , Tetraciclinas/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión/economía , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/química , Límite de Detección , Microextracción en Fase Líquida/economía , Microextracción en Fase Líquida/métodos , Solventes/química
15.
Ecotoxicol Environ Saf ; 164: 243-252, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30121499

RESUMEN

ß-Diketone antibiotics (DKAs) are widely used in human and veterinary medicine to prevent and treat a large variety of infectious diseases. Long-term DKA exposure to zebrafish can result in lipid metabolism disorders and liver function abnormalities. Based on our previous miRNA-seq analyses, miR-144 and miR-125b were identified as target genes regulating lipid metabolism. DKA-exposure at 12.5 and 25 mg/L significantly increased the expressions of miR-144 and miR-125b. The expression levels for the two miRNAs exhibited an inverse relationship with their lipid-metabolism-related target genes (ppardb, bcl2a, pparaa and pparda). Over-expression and inhibition of miR-144 and miR-125b were observed by micro-injection of agomir-144, agomir-125b, antagomir-144 and antagomir-125b. The over-expression of miR-144 and miR-125b enhanced lipid accumulation and further induced lipid-metabolism-disorder syndrome in F1-zebrafish. The expression of ppardb and bcl2a in whole-mount in situ hybridization was in general agreement with results from qRT-PCR and was concentration-dependent. Oil red O and H&E staining, as well as related physiological and biochemical indexes, showed that chronic DKA exposure resulted in lipid-metabolism-disorder in F0-adults, and in F1-larvae fat accumulation, increased lipid content, abnormal liver function and obesity. The abnormal levels of triglyceride (TG) and total cholesterol (TCH) in DKA-exposed zebrafish increased the risk of hyperlipidemia, atherosclerosis and coronary heart disease. These observations improve our understanding of mechanisms leading to liver disease from exposure to environmental pollution, thereby having relevant practical significance in health prevention, early intervention, and gene therapy for drug-induced diseases.


Asunto(s)
Antibacterianos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , MicroARNs/genética , Pez Cebra/genética , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/patología , Clortetraciclina/toxicidad , Colesterol/sangre , Ciprofloxacina/toxicidad , Biología Computacional , Modelos Animales de Enfermedad , Doxiciclina/toxicidad , Enrofloxacina/toxicidad , Femenino , Hiperlipidemias/inducido químicamente , Hiperlipidemias/patología , Larva/efectos de los fármacos , Larva/metabolismo , Masculino , MicroARNs/metabolismo , Ofloxacino/toxicidad , Oxitetraciclina/toxicidad , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Triglicéridos/sangre , Regulación hacia Arriba , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Nature ; 477(7362): 78-81, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21886160

RESUMEN

Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.


Asunto(s)
Carbono/metabolismo , Ecosistema , Sedimentos Geológicos/química , Nitrógeno/metabolismo , Árboles/química , Árboles/metabolismo , Biomasa , Carbono/análisis , Ciclo del Carbono , Geología , Nitrógeno/análisis , Ciclo del Nitrógeno , Isótopos de Nitrógeno/análisis , Hojas de la Planta/química , Suelo/química , Factores de Tiempo
17.
Ecology ; 97(1): 54-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27008775

RESUMEN

Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined.


Asunto(s)
Bosques , Modelos Biológicos , Nitrógeno/química , Nitrógeno/metabolismo , Compuestos de Amonio/química , Monitoreo del Ambiente/métodos , Fenómenos Geológicos , Suelo/química
18.
Glob Chang Biol ; 22(11): 3566-3582, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170579

RESUMEN

Estimates of global riverine nitrous oxide (N2 O) emissions contain great uncertainty. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N2 O emission rates and emission factors. Riverine N2 O flux was significantly correlated with NH4 , NO3 and DIN (NH4  + NO3 ) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2 O emission rate and DIN load) and EF(b) (i.e., the ratio of N2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2 O emission rates (EF(a): R2  = 0.92 for both global and climatic zone models, n = 70; EF(b): R2  = 0.91 for global model and R2  = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2 O emission rates of 29.6-35.3 (mean = 32.2) Gg N2 O-N yr-1 and emission factors of 0.16-0.19% (mean = 0.17%). Global riverine N2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2 O emission rates (300-2100 Gg N2 O-N yr-1 ) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.


Asunto(s)
Óxido Nitroso , Ríos , Carbono , Modelos Teóricos , Nitrógeno
19.
Environ Toxicol ; 31(11): 1357-1371, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25846866

RESUMEN

Transcriptome analysis is important for interpreting the functional elements of the genome and revealing the molecular constituents of cells and tissues. Herein, differentially transcribed genes were identified by deep sequencing after zebrafish (Danio rerio) were exposed to ß-diketone antibiotics (DKAs); 23,129 and 23,550 mapped genes were detected in control and treatment groups, a total of 3238 genes were differentially expressed between control and treatment groups. Of these genes, 328 genes (213 up- and 115 down-regulation) had significant differential expression (p < 0.05) and an expression ratio (control/treatment) of >2 or <0.5. Additionally, we performed Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and found 266 genes in the treatment group with annotation terms linked to the GO category. A total of 77 differentially expressed transcriptional genes were associated with 132 predicted KEGG metabolic pathways. Serious liver tissue damage was reflected and consistent with the differences in genetic classification and function from the transcriptome analysis. These results enhance our understanding of zebrafish developmental processes under exposure to DKA stress. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1357-1371, 2016.


Asunto(s)
Antibacterianos/toxicidad , Cetonas/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Antibacterianos/química , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Cetonas/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Microscopía Electrónica , Análisis de Secuencia de ARN , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Environ Monit Assess ; 188(1): 15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26643812

RESUMEN

In the context of water resource management and pollution control, the characterization of water quality impairments and identification of dominant pollutants are of critical importance. In this study, water quality impairment was assessed on the basis of 7 hydrochemical variables that were monitored bimonthly at 17 sites in 2010 along the rural-suburban-urban portion of the Wen-Rui Tang River in eastern China. Seven methods were used to assess water quality in the river system. These methods included single-factor assessment, water quality grading, comprehensive pollution index, the Nemerow pollution index, principle component analysis, fuzzy comprehensive evaluation, and comprehensive water quality identification index. Our analysis showed that the comprehensive water quality identification index was the best method for assessing water quality in the Wen-Rui Tang River due to its ability to effectively characterize highly polluted waters with multiple impairments. Furthermore, a guideline for the applications of these methods was presented based on their characteristics and efficacy. Results indicated that the dominant pollutant impairing water quality was total nitrogen comprised mainly of ammonium. The temporal variation of water quality was closely related to precipitation as a result of dilution. The spatial variation of water quality was associated with anthropogenic influences (urban, industrial, and agriculture activities) and water flow direction (downstream segments experiencing cumulative effects of upstream inputs). These findings provide valuable information and guidance for water pollution control and water resource management in highly polluted surface waters with multiple water quality impairments in areas with rapid industrial growth and urbanization.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminación del Agua/análisis , China , Conservación de los Recursos Naturales , Sustancias Peligrosas/análisis , Nitrógeno/análisis , Contaminación del Agua/estadística & datos numéricos , Calidad del Agua/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA