Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 217(1): 233-244, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28921561

RESUMEN

Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleótidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ribosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Oscuridad , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de la radiación
2.
Plant Cell ; 25(10): 4101-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24130159

RESUMEN

Purine nucleotide catabolism is common to most organisms and involves a guanine deaminase to convert guanine to xanthine in animals, invertebrates, and microorganisms. Using metabolomic analysis of mutants, we demonstrate that Arabidopsis thaliana uses an alternative catabolic route employing a highly specific guanosine deaminase (GSDA) not reported from any organism so far. The enzyme is ubiquitously expressed and deaminates exclusively guanosine and 2'-deoxyguanosine but no other aminated purines, pyrimidines, or pterines. GSDA belongs to the cytidine/deoxycytidylate deaminase family of proteins together with a deaminase involved in riboflavin biosynthesis, the chloroplastic tRNA adenosine deaminase Arg and a predicted tRNA-specific adenosine deaminase 2 in A. thaliana. GSDA is conserved in plants, including the moss Physcomitrella patens, but is absent in the algae and outside the plant kingdom. Our data show that xanthosine is exclusively generated through the deamination of guanosine by GSDA in A. thaliana, excluding other possible sources like the dephosphorylation of xanthosine monophosphate. Like the nucleoside hydrolases NUCLEOSIDE HYDROLASE1 (NSH1) and NSH2, GSDA is located in the cytosol, indicating that GMP catabolism to xanthine proceeds in a mostly cytosolic pathway via guanosine and xanthosine. Possible implications for the biosynthetic route of purine alkaloids (caffeine and theobromine) and ureides in other plants are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Nucleósido Desaminasas/metabolismo , Purinas/metabolismo , Ribonucleósidos/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , ADN Bacteriano/genética , Metaboloma , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nucleósido Desaminasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Xantinas
3.
Mol Microbiol ; 77(1): 108-27, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20487272

RESUMEN

Summary The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispensability. We could construct a viable prsA null mutant in the presence of a high concentration of magnesium. Various changes in cell morphology in the absence of PrsA suggested that PrsA is involved in the biosynthesis of the cylindrical lateral wall. Consistently, four penicillin-binding proteins (PBP2a, PBP2b, PBP3 and PBP4) were unstable in the absence of PrsA, while muropeptide analysis revealed a 2% decrease in the peptidoglycan cross-linkage index. Misfolded PBP2a was detected in PrsA-depleted cells, indicating that PrsA is required for the folding of this PBP either directly or indirectly. Furthermore, strongly increased uniform staining of cell wall with a fluorescent vancomycin was observed in the absence of PrsA. We also demonstrated that PrsA is a dimeric or oligomeric protein which is localized at distinct spots organized in a helical pattern along the cell membrane. These results suggest that PrsA is essential for normal growth most probably as PBP folding is dependent on this PPIase.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Pliegue de Proteína , Bacillus subtilis/citología , Proteínas Bacterianas/genética , Membrana Celular/química , Pared Celular/química , Pared Celular/metabolismo , Eliminación de Gen , Genes Bacterianos , Genes Esenciales , Lipoproteínas/genética , Magnesio/metabolismo , Proteínas de la Membrana/genética , Peptidoglicano/análisis , Isomerasa de Peptidilprolil/genética , Multimerización de Proteína
4.
Plant Physiol ; 154(1): 98-108, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631318

RESUMEN

Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.


Asunto(s)
Arginina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Urea/metabolismo , Regiones no Traducidas 5'/genética , Apoenzimas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arginasa/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Germinación/efectos de los fármacos , Intrones/genética , Datos de Secuencia Molecular , Nitratos/farmacología , Oryza/efectos de los fármacos , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Urea/farmacología , Ureasa/química , Ureasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA