Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epidemiol Infect ; 152: e87, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751220

RESUMEN

It is so far unclear how the COVID-19 winter waves started and what should be done to prevent possible future waves. In this study, we deciphered the dynamic course of a winter wave in 2021 in Saxony, a state in Eastern Germany neighbouring the Czech Republic and Poland. The study was carried out through the integration of multiple virus genomic epidemiology approaches to track transmission chains, identify emerging variants and investigate dynamic changes in transmission clusters. For identified local variants of interest, functional evaluations were performed. Multiple long-lasting community transmission clusters have been identified acting as driving force for the winter wave 2021. Analysis of the dynamic courses of two representative clusters indicated a similar transmission pattern. However, the transmission cluster caused by a locally occurring new Delta variant AY.36.1 showed a distinct transmission pattern, and functional analyses revealed a replication advantage of it. This study indicated that long-lasting community transmission clusters starting since early autumn caused by imported or locally occurring variants all contributed to the development of the 2021 winter wave. The information we achieved might help future pandemic prevention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estaciones del Año , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Alemania/epidemiología , Humanos , SARS-CoV-2/genética
2.
J Immunol ; 206(1): 164-180, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239420

RESUMEN

Signal peptide peptidase-like 2a (SPPL2a) is an aspartyl intramembrane protease essential for degradation of the invariant chain CD74. In humans, absence of SPPL2a leads to Mendelian susceptibility to mycobacterial disease, which is attributed to a loss of the dendritic cell (DC) subset conventional DC2. In this study, we confirm depletion of conventional DC2 in lymphatic tissues of SPPL2a-/- mice and demonstrate dependence on CD74 using SPPL2a-/- CD74-/- mice. Upon contact with mycobacteria, SPPL2a-/- bone marrow-derived DCs show enhanced secretion of IL-1ß, whereas production of IL-10 and IFN-ß is reduced. These effects correlated with modulated responses upon selective stimulation of the pattern recognition receptors TLR4 and Dectin-1. In SPPL2a-/- bone marrow-derived DCs, Dectin-1 is redistributed to endosomal compartments. Thus, SPPL2a deficiency alters pattern recognition receptor pathways in a CD74-dependent way, shifting the balance from anti- to proinflammatory cytokines in antimycobacterial responses. We propose that in addition to the DC reduction, this altered DC functionality contributes to Mendelian susceptibility to mycobacterial disease upon SPPL2a deficiency.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Células Dendríticas/inmunología , Proteínas de la Membrana/metabolismo , Mycobacterium bovis/fisiología , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Ácido Aspártico Endopeptidasas/genética , Bovinos , Células Cultivadas , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inmunidad , Inmunomodulación , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 4/inmunología , Tuberculosis Bovina
3.
J Clin Microbiol ; 60(5): e0253321, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35387489

RESUMEN

Time to results for identification (ID) and antimicrobial susceptibility testing (AST) from blood cultures is an important factor impacting outcome in sepsis. In this study we evaluated a novel device, the FAST™ system from Qvella that concentrates microbial biomass from positive blood culture flasks with the FAST-PBC Prep™ cartridge thereby producing a liquid colony™ (LC), which can be used immediately in standard laboratory downstream applications. We tested 250 positive blood culture bottles collected from January 2021 to May 2021. Results were obtained either with LC or from bacterial overnight cultures using Bruker's MALDI Biotyper™ and bioMérieux's Vitek 2. We compared ID and AST results obtained by both methods and evaluated turnaround times. Two-hundred and fourteen blood cultures could be included in the analysis. In 94% of the cases (n = 201) identification was obtained directly from the LC with concordant results compared to the standard workflow. No discordant results were observed. AST results could be analyzed for 175 samples. Using categorical analysis, concordant agreement was 97.4% of 1,676 AST results for Gram positive bacteria. Agreement for Gram negative bacteria was 98.5% of 980 AST results. Times-to-result were 36.9 h versus 12.8 h for ID and 52.9 h versus 26.8 h for AST in routine workflow vs FASTTM system, respectively. The FASTTM system gives reliable results for ID and AST directly from positive blood cultures and allows for significant time savings in blood culture diagnostics.


Asunto(s)
Bacteriemia , Cultivo de Sangre , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/microbiología , Cultivo de Sangre/métodos , Bacterias Gramnegativas , Humanos , Pruebas de Sensibilidad Microbiana , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Factores de Tiempo
4.
Infection ; 50(6): 1483-1490, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35460495

RESUMEN

PURPOSE: To quantify the number of SARS-CoV-2 infections in students and teachers in 14 Secondary schools in eastern Saxony, Germany. Seroprevalence of SARS-CoV-2 antibodies in study population. Number of undetected cases. METHODS: Serial seroprevalence study. RESULTS: The role of educational settings in the SARS-CoV-2 Pandemic is still controversial. Seroprevalence increases from 0.8 to 5.9% from October to December when schools remained open and to 12.2% in March/April during a strict lockdown with closed schools. The ratio of undetected to detected cases decreased from 0.76 to 0.44 during the study period. CONCLUSION: During the second and third wave of the pandemic in Germany, students and teachers are not overrepresented in SARS-CoV-2 infections. The percentage of undetected cases is moderate and decreases over time. The risk of contracting SARS-CoV-2 within the household is higher than contracting it in educational settings making school closures rather ineffective in terms of pandemic control measures or individual risk reduction in children and adolescents. TRIAL REGISTRATION: DRKS00022455 (July 23rd, 2020).


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Niño , Humanos , Estudios Seroepidemiológicos , COVID-19/epidemiología , Estudios Longitudinales , Control de Enfermedades Transmisibles , Instituciones Académicas
5.
J Immunol ; 205(6): 1580-1592, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796022

RESUMEN

Mycobacteria survive in macrophages despite triggering pattern recognition receptors and T cell-derived IFN-γ production. Mycobacterial cord factor trehalose-6,6-dimycolate (TDM) binds the C-type lectin receptor MINCLE and induces inflammatory gene expression. However, the impact of TDM on IFN-γ-induced macrophage activation is not known. In this study, we have investigated the cross-regulation of the mouse macrophage transcriptome by IFN-γ and by TDM or its synthetic analogue trehalose-6,6-dibehenate (TDB). As expected, IFN-γ induced genes involved in Ag presentation and antimicrobial defense. Transcriptional programs induced by TDM and TDB were highly similar but clearly distinct from the response to IFN-γ. The glycolipids enhanced expression of a subset of IFN-γ-induced genes associated with inflammation. In contrast, TDM/TDB exerted delayed inhibition of IFN-γ-induced genes, including pattern recognition receptors, MHC class II genes, and IFN-γ-induced GTPases, with antimicrobial function. TDM downregulated MHC class II cell surface expression and impaired T cell activation by peptide-pulsed macrophages. Inhibition of the IFN-γ-induced GTPase GBP1 occurred at the level of transcription by a partially MINCLE-dependent mechanism that may target IRF1 activity. Although activation of STAT1 was unaltered, deletion of Socs1 relieved inhibition of GBP1 expression by TDM. Nonnuclear Socs1 was sufficient for inhibition, suggesting a noncanonical, cytoplasmic mechanism. Taken together, unbiased analysis of transcriptional reprogramming revealed a significant degree of negative regulation of IFN-γ-induced Ag presentation and antimicrobial gene expression by the mycobacterial cord factor that may contribute to mycobacterial persistence.


Asunto(s)
Factores Cordón/metabolismo , Proteínas de Unión al GTP/metabolismo , Inflamación/microbiología , Lectinas Tipo C/metabolismo , Macrófagos/fisiología , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Animales , Presentación de Antígeno , Células Cultivadas , Proteínas de Unión al GTP/genética , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Interferón gamma/metabolismo , Lectinas Tipo C/genética , Activación de Macrófagos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Tuberculosis/inmunología
6.
Nucleic Acids Res ; 48(22): 12833-12844, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33275131

RESUMEN

RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2'-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.


Asunto(s)
Inmunidad Innata/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Receptor Toll-Like 7/genética , Escherichia coli/genética , Regulación de la Expresión Génica/genética , Guanosina/genética , Guanosina/inmunología , Humanos , Interferones/genética , Interferones/inmunología , Metilación , Procesamiento Postranscripcional del ARN/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/inmunología
7.
RNA ; 25(7): 869-880, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019095

RESUMEN

Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.


Asunto(s)
Endosomas/metabolismo , Células Eucariotas/inmunología , Guanosina/química , Inmunidad Innata/inmunología , Células Procariotas/inmunología , ARN de Transferencia/metabolismo , Receptores Toll-Like/metabolismo , Células Eucariotas/metabolismo , Humanos , Metilación , Células Procariotas/metabolismo , ARN de Transferencia/genética , Receptores Toll-Like/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
8.
J Pediatr ; 237: 136-142, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34324882

RESUMEN

OBJECTIVE: To evaluate the role of childcare facilities in the transmission of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) in a longitudinal study to gain further knowledge of SARS-CoV-2 prevalence, transmission, and spread among preschool children, their parents, and their caregivers. STUDY DESIGN: Children aged 1-6 years, their parents, and their caregivers in 14 childcare facilities in Dresden, Saxony/Germany were invited to participate in the KiTaCoviDD19-study between July 2020 and January 2021. Seroprevalence of SARS-CoV-2 antibodies was assessed up to 4 times during the study period in all participating adults, and demographic characteristics, as well as epidemiologic information on personal SARS-CoV-2 history were obtained. Samples for stool virus shedding of SARS-CoV-2 were analyzed by polymerase chain reaction every 2-4 weeks in all participating children. RESULTS: In total, 318 children, 299 parents and 233 childcare workers were enrolled. By January 2021, 11% of the participating adults were found to be seropositive, whereas the percentage of children shedding SARS-CoV-2 was 6.8%. Overall, we detected 17 children with SARS-CoV-2 virus shedding in 8 different childcare facilities. In 4 facilities, there were a maximum of 3 connected cases in children. Approximately 50% of SARS-CoV-2 infections in the children could not be connected to a secondary case in our study population. CONCLUSIONS: This study does not provide evidence of relevant asymptomatic ("silent") spread of SARS-CoV-2 in childcare facilities in both low- and high-prevalence settings. Our findings add to the evidence that childcare and educational settings do not have a crucial role in driving the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19/transmisión , Guarderías Infantiles/estadística & datos numéricos , Adulto , COVID-19/epidemiología , Prueba de COVID-19/métodos , Niño , Preescolar , Heces/virología , Femenino , Alemania/epidemiología , Humanos , Lactante , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pandemias , Padres , Prevalencia , Cuarentena , Estudios Retrospectivos , SARS-CoV-2 , Esparcimiento de Virus
9.
Epidemiol Infect ; 149: e177, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34325753

RESUMEN

In Germany, Eastern regions had a mild first wave of coronavirus disease 2019 (COVID-19) from March to May 2020, but were badly hit by a second wave later in autumn and winter. It is unknown how the second wave was initiated and developed in Eastern Germany where the number of COVID-19 cases was close to zero in June and July 2020. We used genomic epidemiology to investigate the dynamic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage development across the first and second waves in Eastern Germany. With detailed phylogenetic analyses we could show that SARS-CoV-2 lineages prevalent in the first and second waves in Eastern Germany were different, with several new variants including four predominant lineages in the second wave, having been introduced into Eastern Germany between August and October 2020. The results indicate that the major driving force behind the second wave was the introduction of new variants.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Pandemias , SARS-CoV-2/genética , COVID-19/virología , Alemania/epidemiología , Humanos , Filogenia , SARS-CoV-2/clasificación
10.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200296

RESUMEN

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFß signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


Asunto(s)
Células Epiteliales/patología , Pulmón/patología , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Alveolos Pulmonares/patología , Fibrosis Pulmonar/patología , Animales , Animales Recién Nacidos , Células Epiteliales/metabolismo , Femenino , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Fibrosis Pulmonar/etiología
11.
Eur J Clin Microbiol Infect Dis ; 39(7): 1245-1250, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32026192

RESUMEN

Syndromic panel-based molecular testing has been suggested to improve and accelerate microbiological diagnosis. We aimed to analyze workflow improvements when using the multiplex Seegene Allplex™ GI-Bacteria(I) assay as a first-line assay for bacterial diarrhea. Technical assay evaluation was done using spiked stool samples and stored patient samples. After implementation of the assay in the routine clinical workflow, an analysis of 5032 clinical samples analyzed by the Seegene assay and 4173 control samples examined by culture in a similar time period 1 year earlier was performed. Sensitivity of the assay was shown to be between 0.4 and 95.9 genome equivalents/PCR. For 159 positive patient samples with a composite reference of culture and/or a molecular assay, the sensitivity of the assay was 100% for Campylobacter, 92% for Salmonella, 89% for Aeromonas, and 83% for Shigella. Sensitivity for C. difficile toxin B detection was 93.9%. The comparison of clinical samples obtained in two 8-month periods showed increased detection rates for Aeromonas (2.90%vs. 0.34%), Campylobacter spp. (2.25% vs. 1.34%), Shigella spp. (0.42% vs. 0.05%) whereas detection of Salmonella was slightly decreased (0.46% vs. 0.67%) when using the Seegene assay. An analysis of the time-to-result showed that the median dropped from 52.7 to 26.4 h when using the molecular panel testing. The Seegene Allplex™ GI-Bacteria(I) assay allows accelerated, reliable detection of major gastrointestinal bacteria roughly within 1 day. Workload is reduced, specifically in a low-prevalence setting.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana/métodos , Diarrea/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Bacterias/clasificación , Bacterias/genética , Técnicas de Tipificación Bacteriana/normas , Pruebas Diagnósticas de Rutina , Diarrea/microbiología , Heces/microbiología , Humanos , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena de la Polimerasa Multiplex , Sensibilidad y Especificidad , Factores de Tiempo , Flujo de Trabajo
12.
Nucleic Acids Res ; 46(18): 9764-9775, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102387

RESUMEN

Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2'-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2'-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2'O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.


Asunto(s)
Inmunidad Innata/genética , Ácidos Nucleicos/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/genética , Guanosina/química , Guanosina/inmunología , Humanos , Hidrógeno/química , Interferones/genética , Leucocitos Mononucleares/química , Leucocitos Mononucleares/inmunología , Metilación , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , ARN de Transferencia/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Receptor Toll-Like 7/inmunología
13.
Gastroenterology ; 154(8): 2237-2251.e16, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535029

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infections most often result in chronic outcomes, although the virus constantly produces replication intermediates, in particular double-stranded RNA (dsRNA), representing potent inducers of innate immunity. We aimed to characterize the fate of HCV dsRNA in hepatocyte cultures to identify mechanisms contributing to viral persistence in presence of an active innate immune response. METHODS: We analyzed hepatocyte-based culture models for HCV for induction of innate immunity, secretion of virus positive- or negative-strand RNA, and viral replication using different quantification methods and microscopy techniques. Expression of pattern recognition receptors was reconstituted in hepatoma cells by lentiviral transduction. RESULTS: HCV-infected cells secrete substantial amounts of virus positive- and negative-strand RNAs in extracellular vesicles (EVs), toward the apical and basolateral domain of hepatocytes. Secretion of negative-strand RNA was independent from virus production, and viral RNA secreted in EVs contained higher relative amounts of negative-strands, indicating that mostly virus dsRNA is released. A substantial part of viral replication complexes and dsRNA was found in the endosomal compartment and multivesicular bodies, indicating that secretion of HCV replication intermediates is mediated by the exosomal pathway. Block of vesicle release in HCV-positive cells increased intracellular dsRNA levels and increased activation of toll-like receptor 3, inhibiting HCV replication. CONCLUSIONS: Using hepatocyte-based culture models for HCV, we found a portion of HCV dsRNA intermediates to be released from infected cells in EVs, which reduces activation of toll-like receptor 3. This represents a novel mechanism how HCV evades host immune responses, potentially contributing to viral persistence.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C Crónica/inmunología , Hepatocitos/metabolismo , Inmunidad Innata , Receptor Toll-Like 3/inmunología , Línea Celular , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Hepatitis C Crónica/sangre , Hepatitis C Crónica/virología , Hepatocitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferones/inmunología , Interferones/metabolismo , Cultivo Primario de Células , ARN Bicatenario/inmunología , ARN Bicatenario/aislamiento & purificación , ARN Bicatenario/metabolismo , ARN Viral/inmunología , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 3/metabolismo , Replicación Viral/inmunología
14.
RNA ; 23(9): 1344-1351, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28576825

RESUMEN

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between "host" and "foreign" RNA. Ribose 2'-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2'-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2'-O-methylated RNA sequence, we performed a systematic permutation of the methylated nucleotide as well as adjacent bases and hereby identify two minimal trinucleotide motifs within a 9-mer oligoribonucleotide that are necessary and sufficient to antagonize TLR7 and TLR8 activation, respectively. Given the growing interest in the development of inhibitors of nucleic acid-sensing TLRs for therapeutic purposes, these results will facilitate the rational design of such antagonists in the future.


Asunto(s)
Motivos de Nucleótidos , ARN/genética , ARN/metabolismo , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/antagonistas & inhibidores , Citidina , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares , Metilación , Mutación , Nucleótidos/química , Nucleótidos/metabolismo , ARN/química , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo
15.
BMC Microbiol ; 19(1): 42, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777006

RESUMEN

BACKGROUND: Postoperative complications are of great relevance in daily clinical practice, and the gut microbiome might play an important role by preventing pathogens from crossing the intestinal barrier. The two aims of this prospective clinical pilot study were: (1) to examine changes in the gut microbiome following pancreatic surgery, and (2) to correlate these changes with the postoperative course of the patient. RESULTS: In total, 116 stool samples of 32 patients undergoing pancreatic surgery were analysed by 16S-rRNA gene next-generation sequencing. One sample per patient was collected preoperatively in order to determine the baseline gut microbiome without exposure to surgical stress and/or antibiotic use. At least two further samples were obtained within the first 10 days following the surgical procedure to observe longitudinal changes in the gut microbiome. Whenever complications occurred, further samples were examined. Based on the structure of the gut microbiome, the samples could be allocated into three different microbial communities (A, B and C). Community B showed an increase in Akkermansia, Enterobacteriaceae and Bacteroidales as well as a decrease in Lachnospiraceae, Prevotella and Bacteroides. Patients showing a microbial composition resembling community B at least once during the observation period were found to have a significantly higher risk for developing postoperative complications (B vs. A, odds ratio = 4.96, p < 0.01**; B vs. C, odds ratio = 2.89, p = 0.019*). CONCLUSIONS: The structure of the gut microbiome is associated with the development of postoperative complications.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Enfermedades Pancreáticas/cirugía , Complicaciones Posoperatorias/microbiología , Anciano , Bacterias/aislamiento & purificación , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Filogenia , Proyectos Piloto , Estudios Prospectivos , ARN Ribosómico 16S/genética , Factores de Riesgo
16.
Cerebrovasc Dis ; 43(3-4): 99-109, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28049200

RESUMEN

BACKGROUND: Stroke-induced immunodeficiency increases the risk of infectious complications, which adversely affects neurological outcome. Among those, pneumonia affects as many as one third of stroke patients and is the main contributor to mortality in the post-acute phase of stroke. Experimental findings on post-stroke susceptibility to spontaneous pneumonia in mice are contradictory. Here, we established a mouse model inducing standardized bacterial pneumonia and characterized the impaired pulmonary cellular and humoral immune responses after experimental stroke. METHODS: Bacterial pneumonia was induced by intra-tracheal inoculation with Streptococcus pneumoniae at different time points after transient middle cerebral artery occlusion (MCAO). Bacterial counts in lungs and blood, histological changes, and cytokine production in the lungs were assessed. Furthermore, we investigated the effect of pneumonia on stroke outcome. RESULTS: Intra-tracheal inoculation resulted in reproducible pneumonia and bacteraemia, and demonstrated post-stroke susceptibility to streptococcal pneumonia developing with a delay of at least 24 h after MCAO. Higher bacterial counts in mice infected 3 days after stroke induction correlated with reduced neutrophil and macrophage infiltration in the lungs and lower levels of pro-inflammatory cytokines in the broncho-alveolar lavage compared to sham-operated animals. Pneumonia increased mortality without affecting brain-infiltrating leukocytes. CONCLUSIONS: In this standardized mouse model of post-stroke pneumonia, we describe attenuated leukocyte infiltration and cytokine production in response to bacterial infection in the lungs that has a profound effect on outcome.


Asunto(s)
Huésped Inmunocomprometido , Infarto de la Arteria Cerebral Media/inmunología , Pulmón/microbiología , Infecciones Oportunistas/microbiología , Neumonía Neumocócica/microbiología , Streptococcus pneumoniae/patogenicidad , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Exposición por Inhalación , Leucopenia/sangre , Leucopenia/inmunología , Leucopenia/microbiología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones Endogámicos C57BL , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Infecciones Oportunistas/sangre , Infecciones Oportunistas/inmunología , Neumonía Neumocócica/sangre , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Factores de Tiempo
17.
J Immunol ; 195(2): 411-8, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26138638

RESUMEN

Although DNA of bacterial and viral origin, as well as viral RNA, have been intensively studied as triggers of innate immune responses, the stimulatory properties of bacterial RNA and its role during infections have just begun to be deciphered. Bacterial RNA is a strong inducer of type I IFN and NF-κB-dependent cytokines, and it also can activate the Nlrp3 inflammasome. In this review, we focus on the receptors and signaling pathways involved in innate immune activation by bacterial RNA and analyze the physiological relevance of bacterial RNA recognition during infections. Furthermore, we present the concept that RNA modifications can impair RNA-dependent immune activation. RNA modifications differ between eukaryotes and prokaryotes; thus, they can serve to define the innate pattern that is recognized. In this regard, we discuss the role of ribose 2'-O-methylation as a potential immune-escape mechanism.


Asunto(s)
Células Dendríticas/inmunología , Inmunidad Innata , Inflamasomas/inmunología , Monocitos/inmunología , ARN Bacteriano/inmunología , Ribosa/inmunología , Bacterias/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Células Dendríticas/microbiología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/genética , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Metilación , Monocitos/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Ribosa/metabolismo , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
18.
J Immunol ; 195(3): 1092-9, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26101323

RESUMEN

Microbial nucleic acids constitute an important group of pathogen-associated molecular patterns (PAMPs) that efficiently trigger innate immune activation. In mice, TLR13 has recently been identified to sense a highly conserved region within bacterial 23S rRNA. However, TLR13 is not expressed in humans, and the identity of its human homolog remains elusive. Moreover, the contribution of bacterial RNA to the induction of innate immune responses against entire bacteria is still insufficiently defined. In the current study, we show that human monocytes respond to bacterial RNA with secretion of IL-6, TNF, and IFN-ß, which is critically dependent on lysosomal maturation. Using small interfering RNA and overexpression, we unambiguously identify TLR8 as receptor for bacterial RNA in primary human monocyte-derived macrophages. We further demonstrate that the sequence motif sensed by TLR8 is clearly distinct from that recognized by TLR13. Moreover, TLR8-dependent detection of bacterial RNA was critical for triggering monocyte activation in response to infection with Streptococcus pyogenes. Bacterial RNA within streptococci was also a dominant stimulus for murine immune cells, highlighting the physiological relevance of RNA sensing in defense of infections.


Asunto(s)
ARN Bacteriano/inmunología , ARN Ribosómico 23S/inmunología , Streptococcus pyogenes/genética , Receptor Toll-Like 8/inmunología , Receptores Toll-Like/inmunología , Animales , Línea Celular , Humanos , Interferón beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/inmunología , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Interferencia de ARN , ARN Bacteriano/genética , ARN Ribosómico 23S/genética , ARN Interferente Pequeño , Streptococcus pyogenes/inmunología , Receptor Toll-Like 8/biosíntesis , Receptor Toll-Like 8/genética , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
J Immunol ; 195(11): 5421-31, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519528

RESUMEN

Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1ß processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1ß maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1ß secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1ß, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1ß cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1ß by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1ß, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications.


Asunto(s)
Caspasa 8/inmunología , Células Dendríticas/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Animales , Células de la Médula Ósea , Proteínas Portadoras , Caspasa 1/genética , Caspasa 1/inmunología , Inhibidores de Caspasas/farmacología , Caspasas/genética , Caspasas Iniciadoras , Células Cultivadas , Colitis/inducido químicamente , Sulfato de Dextran , Histona Desacetilasas/inmunología , Inflamasomas/inmunología , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR
20.
Mediators Inflamm ; 2017: 5047403, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29445257

RESUMEN

A genuine microbiota resides in the lungs which emanates from the colonization by the oropharyngeal microbiota. Changes in the oropharyngeal microbiota might be the source of dysbiosis observed in the lower airways in patients suffering from asthma or cystic fibrosis (CF). To examine this hypothesis, we compared the throat microbiota from healthy children (n = 62) and that from children with asthma (n = 27) and CF (n = 57) aged 6 to 12 years using 16S rRNA amplicon sequencing. Our results show high levels of similarities between healthy controls and children with asthma and CF revealing the existence of a core microbiome represented by Prevotella, Streptococcus, Neisseria, Veillonella, and Haemophilus. However, in CF, the global diversity, the bacterial load, and abundances of 53 OTUs were significantly reduced, whereas abundances of 6 OTUs representing opportunistic pathogens such as Pseudomonas, Staphylococcus, and Streptococcus were increased compared to those in healthy controls controls and asthmatics. Our data reveal a core microbiome in the throat of healthy children that persists in asthma and CF indicating shared host regulation favoring growth of commensals. Furthermore, we provide evidence for dysbiosis with a decrease in diversity and biomass associated with the presence of known pathogens consistent with impaired host defense in children with CF.


Asunto(s)
Asma/microbiología , Fibrosis Quística/microbiología , Microbiota , Orofaringe/microbiología , Antibacterianos/uso terapéutico , Biomasa , Niño , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA