Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO J ; 42(23): e113527, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846891

RESUMEN

Emergency granulopoiesis is the enhanced and accelerated production of granulocytes that occurs during acute infection. The contribution of hematopoietic stem cells (HSCs) to this process was reported; however, how HSCs participate in emergency granulopoiesis remains elusive. Here, using a mouse model of emergency granulopoiesis we observe transcriptional changes in HSCs as early as 4 h after lipopolysaccharide (LPS) administration. We observe that the HSC identity is changed towards a myeloid-biased HSC and show that CD201 is enriched in lymphoid-biased HSCs. While CD201 expression under steady-state conditions reveals a lymphoid bias, under emergency granulopoiesis loss of CD201 marks the lymphoid-to-myeloid transcriptional switch. Mechanistically, we determine that lymphoid-biased CD201+ HSCs act as a first response during emergency granulopoiesis due to direct sensing of LPS by TLR4 and downstream activation of NF-κΒ signaling. The myeloid-biased CD201- HSC population responds indirectly during an acute infection by sensing G-CSF, increasing STAT3 phosphorylation, and upregulating LAP/LAP* C/EBPß isoforms. In conclusion, HSC subpopulations support early phases of emergency granulopoiesis due to their transcriptional rewiring from a lymphoid-biased to myeloid-biased population and thus establishing alternative paths to supply elevated numbers of granulocytes.


Asunto(s)
Células Madre Hematopoyéticas , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Hematopoyesis , Granulocitos/metabolismo
2.
PLoS Genet ; 19(1): e1010582, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36626368

RESUMEN

Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.


Asunto(s)
Cromatina , Metabolismo de los Lípidos , Estrés Oxidativo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Acetiltransferasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cromatina/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética
3.
EMBO Rep ; 24(1): e54729, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36341527

RESUMEN

Chronic inflammation represents a major threat to human health since long-term systemic inflammation is known to affect distinct tissues and organs. Recently, solid evidence demonstrated that chronic inflammation affects hematopoiesis; however, how chronic inflammation affects hematopoietic stem cells (HSCs) on the mechanistic level is poorly understood. Here, we employ a mouse model of chronic multifocal osteomyelitis (CMO) to assess the effects of a spontaneously developed inflammatory condition on HSCs. We demonstrate that hematopoietic and nonhematopoietic compartments in CMO BM contribute to HSC expansion and impair their function. Remarkably, our results suggest that the typical features of murine multifocal osteomyelitis and the HSC phenotype are mechanistically decoupled. We show that the CMO environment imprints a myeloid gene signature and imposes a pro-inflammatory profile on HSCs. We identify IL-6 and the Jak/Stat3 signaling pathway as critical mediators. However, while IL-6 and Stat3 blockage reduce HSC numbers in CMO mice, only inhibition of Stat3 activity significantly rescues their fitness. Our data emphasize the detrimental effects of chronic inflammation on stem cell function, opening new venues for treatment.


Asunto(s)
Inflamación , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , Interleucina-6/metabolismo , Inflamación/metabolismo , Transducción de Señal , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
4.
Blood ; 136(22): 2574-2587, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32822472

RESUMEN

The canonical Wnt signaling pathway is mediated by interaction of ß-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of ß-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates ß-catenin-TCF/LEF interaction. Disruption of the ß-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of ß-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of ß-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the ß-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the ß-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.


Asunto(s)
Granulocitos/metabolismo , Mielopoyesis , Receptores del Factor Estimulante de Colonias/biosíntesis , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo , Animales , Candida albicans , Candidiasis/genética , Candidiasis/metabolismo , Ratones , Ratones Transgénicos , Receptores del Factor Estimulante de Colonias/genética , Factores de Transcripción TCF/genética , beta Catenina/genética
5.
Biofouling ; 34(2): 226-236, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29405092

RESUMEN

A clinically relevant porcine model of a biofilm-infected wound was established in 10 minipigs. The wounds of six experimental animals were infected with a modified polymicrobial Lubbock chronic wound biofilm consisting of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Bacillus subtilis. Four animals served as uninfected controls. The wounds were monitored until they had healed for 24 days. The biofilm persisted in the wounds up to day 14 and significantly affected healing. The control to infected healed wound area ratios were: 45%/21%, 66%/37%, and 90%/57% on days 7, 10 and 14, respectively. The implanted biofilm prolonged inflammation, increased necrosis, delayed granulation and impaired development of the extracellular matrix as seen in histological and gene expression analyses. This model provides a therapeutic one-week window for testing of anti-biofilm treatments and for research on the pathogenesis of wound infections in pig that is clinically the most relevant animal wound healing model.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Animales , Bacillus subtilis/crecimiento & desarrollo , Enterococcus faecalis/crecimiento & desarrollo , Masculino , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Porcinos , Factores de Tiempo
6.
Crit Rev Food Sci Nutr ; 57(5): 933-936, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25897975

RESUMEN

For many, sugar represents a threat to their health, a perception that is driven by increase in the prevalence of obesity, diabetes, and metabolic disorders, which directly or indirectly is connected with the consumption of sugar. However, is sugar to blame for this health crisis, or are sedentary lifestyle and unhealthy diet equally important? Today, sugars and fats are being targeted for restriction or even prohibition. Should we get rid of sugar altogether and/or does it merit a reprieve? Is the effort to "outlaw" sugars a symptom of nutritional extremism that can be as harmful as any other type of extremism?


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Síndrome Metabólico/epidemiología , Edulcorantes Nutritivos/efectos adversos , Obesidad/epidemiología , Diabetes Mellitus Tipo 2/etiología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Conductas Relacionadas con la Salud , Humanos , Síndrome Metabólico/etiología , Obesidad/etiología , Prevalencia , Conducta Sedentaria
8.
Leukemia ; 37(11): 2209-2220, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709843

RESUMEN

Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Animales , Ratones , Proliferación Celular , Daño del ADN , Leucemia Mieloide Aguda/genética , Mutación , Proteína p53 Supresora de Tumor/genética
9.
Materials (Basel) ; 13(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709159

RESUMEN

The paper describes an experiment focusing on the way the material system influences the bond strength of large-format tiles installed on concrete substrate during mechanical loading under conditions that correspond to real-life application. This involves a controllable mechanical load applied over an area of a test model while observing its condition using non-destructive methods (ultrasonic pulse velocity test, acoustic emission method, strain measurement, and acoustic tracing). The model consisted of a concrete slab onto which were mounted four different systems with large-format tiles with the dimensions of 3 m × 1 m. The combinations differed in the thickness of the tile, the adhesive, and whether or not a fabric membrane was included in the adhesive bed. The experiment showed that the loading caused no damage to the ceramic tile. All the detected failures took place in the adhesive layer or in the concrete slab.

10.
Materials (Basel) ; 12(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454919

RESUMEN

This paper focuses on the experimental determination of the shrinkage process in Self-Compacting High-Performance Concrete (SCC HPC) exposed to dry air and autogenous conditions. Special molds with dimensions of 100 mm × 60 mm × 1000 mm and 50 mm × 50 mm × 300 mm equipped with one movable head are used for the measurement. The main aim of this study is to compare the shrinkage curves of SCC HPC, which were obtained by using different measurement devices and for specimens of different sizes. In addition, two different times t0 are considered for the data evaluation to investigate the influence of this factor on the absolute value of shrinkage. In the first case, t0 is the time of the start of measurement, in the second case, t0 is the setting time. The early-shrinkage (48 h) is continuously measured using inductive sensors leant against the movable head and with strain gauges embedded inside the test specimen. To monitor the long term shrinkage, the specimens are equipped with special markers, embedded into the specimens' upper surface or ends. These markers serve as measurement bases for the measurement using mechanical strain gauges. The test specimens are demolded after 48 h and the long term shrinkage is monitored using the embedded strain gauges (inside the specimens) and mechanical strain gauges that are placed, in regular intervals, onto the markers embedded into the specimens' surface or ends. The results show that both types of measurement equipment give a similar result in the case of early age measurement, especially for the specimens cured under autogenous conditions. However, the early age and especially long term measurement are influenced by the position of the measurement sensors, particularly in the case of specimens cured under dry air conditions. It was proven that the time t0 have a fundamental influence on the final values of the shrinkage of investigated SCC HPC and have a significant impact on the conclusions on the size effect.

12.
J Vis Exp ; (132)2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29553501

RESUMEN

Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers. Here we present a detailed description, readout, and interpretation of proliferation and differentiation assays which are used for the investigation of processes involved in myelopoiesis and neutrophilic differentiation. These experiments employ the 32D/G-CSF-R cytokine dependent murine myeloid cell line, which possesses the ability to proliferate in the presence of IL-3 and differentiate in G-CSF. We provide optimized protocols for handling 32D/G-CSF-R cells and discuss major pitfalls and drawbacks that might compromise the described assays and expected results. Additionally, this article contains protocols for lentiviral and retroviral production, titration, and transduction of 32D/G-CSF-R cells. We demonstrate that genetic manipulation of these cells can be employed to successfully perform functional and molecular studies, which can complement results obtained with primary hematopoietic stem and progenitor cells or in vivo models.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Células Mieloides/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas/citología , Ratones , Células Mieloides/citología
13.
Cell Death Differ ; 24(4): 705-716, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186500

RESUMEN

Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Leucemia Mieloide Aguda/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/citología , Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Estradiol/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Granulocitos/citología , Granulocitos/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA