Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581001

RESUMEN

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Asunto(s)
Inmunidad , Neoplasias , Humanos , Inmunoterapia , Inmunomodulación , Neoplasias/terapia
2.
J Org Chem ; 89(7): 5200-5206, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38500359

RESUMEN

A regiodivergent allylation of 1H-indoles highly selectively at the C3 and N1 positions with ß-acyl allylic sulfides through desulfurative C-C/C-N bond-forming reactions has been developed under mild conditions. Notably, the remarkable site-selective switch can be achieved by a delicate choice of solvents and bases. This cost-efficient method displays a broad substrate scope, good functional compatibility, and excellent site-selectivity, thus offering a divergent synthesis of indole substituted α-branched enones, which possess diverse potential opportunities for further applications and derivatization.

3.
Cell Mol Life Sci ; 80(9): 263, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598126

RESUMEN

Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Transición Epitelial-Mesenquimal , Neoplasias/tratamiento farmacológico , Carcinogénesis , Células Epiteliales , Hierro
4.
Mol Cancer ; 22(1): 130, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563639

RESUMEN

The reversible oxidation-reduction homeostasis mechanism functions as a specific signal transduction system, eliciting related physiological responses. Disruptions to redox homeostasis can have negative consequences, including the potential for cancer development and progression, which are closely linked to a series of redox processes, such as adjustment of reactive oxygen species (ROS) levels and species, changes in antioxidant capacity, and differential effects of ROS on downstream cell fate and immune capacity. The tumor microenvironment (TME) exhibits a complex interplay between immunity and regulatory cell death, especially autophagy and apoptosis, which is crucially regulated by ROS. The present study aims to investigate the mechanism by which multi-source ROS affects apoptosis, autophagy, and the anti-tumor immune response in the TME and the mutual crosstalk between these three processes. Given the intricate role of ROS in controlling cell fate and immunity, we will further examine the relationship between traditional cancer therapy and ROS. It is worth noting that we will discuss some potential ROS-related treatment options for further future studies.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Apoptosis , Autofagia , Neoplasias/metabolismo
5.
Cancer Immunol Immunother ; 72(3): 599-615, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35998003

RESUMEN

BACKGROUND: Although immunotherapy and targeted treatments have dramatically improved the survival of melanoma patients, the intra- or intertumoral heterogeneity and drug resistance have hindered the further expansion of clinical benefits. METHODS: The 96 combination frames constructed by ten machine learning algorithms identified a prognostic consensus signature based on 1002 melanoma samples from nine independent cohorts. Clinical features and 26 published signatures were employed to compare the predictive performance of our model. RESULTS: A machine learning-based prognostic signature (MLPS) with the highest average C-index was developed via 96 algorithm combinations. The MLPS has a stable and excellent predictive performance for overall survival, superior to common clinical traits and 26 collected signatures. The low MLPS group with a better prognosis had significantly enriched immune-related pathways, tending to be an immune-hot phenotype and possessing potential immunotherapeutic responses to anti-PD-1, anti-CTLA-4, and MAGE-A3. On the contrary, the high MLPS group with more complex genomic alterations and poorer prognoses is more sensitive to the BRAF inhibitor dabrafenib, confirmed in patients with BRAF mutations. CONCLUSION: MLPS could independently and stably predict the prognosis of melanoma, considered a promising biomarker to identify patients suitable for immunotherapy and those with BRAF mutations who would benefit from dabrafenib.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Imidazoles/uso terapéutico , Inmunoterapia
6.
Cell Mol Life Sci ; 79(11): 577, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316529

RESUMEN

Recently, immunotherapy has gained increasing popularity in oncology. Several immunotherapies obtained remarkable clinical effects, but the efficacy varied, and only subsets of cancer patients benefited. Breaking the constraints and improving immunotherapy efficacy is extremely important in precision medicine. Whereas traditional sequencing approaches mask the characteristics of individual cells, single-cell sequencing provides multiple dimensions of cellular characterization at the single-cell level, including genomic, transcriptomic, epigenomic, proteomic, and multi-omics. Hence, the complexity of the tumor microenvironment, the universality of tumor heterogeneity, cell composition and cell-cell interactions, cell lineage tracking, and tumor drug resistance mechanisms are revealed in-depth. However, the clinical transformation of single-cell technology is not to the point of in-depth study, especially in the application of immunotherapy. The newly discovered vital cells and tremendous biomarkers facilitate the development of more efficient individualized therapeutic regimens to guide clinical treatment and predict prognosis. This review provided an overview of the progress in distinct single-cell sequencing methods and emerging strategies. For perspective, the expanding utility of combining single-cell sequencing and other technologies was discussed.


Asunto(s)
Neoplasias , Proteómica , Humanos , Inmunoterapia/métodos , Microambiente Tumoral/genética , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/terapia , Biomarcadores de Tumor , Análisis de la Célula Individual
7.
Mol Cancer ; 21(1): 220, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517820

RESUMEN

Cancer drug resistance represents the main obstacle in cancer treatment. Drug-resistant cancers exhibit complex molecular mechanisms to hit back therapy under pharmacological pressure. As a reversible epigenetic modification, N6-methyladenosine (m6A) RNA modification was regarded to be the most common epigenetic RNA modification. RNA methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) are frequently disordered in several tumors, thus regulating the expression of oncoproteins, enhancing tumorigenesis, cancer proliferation, development, and metastasis. The review elucidated the underlying role of m6A in therapy resistance. Alteration of the m6A modification affected drug efficacy by restructuring multidrug efflux transporters, drug-metabolizing enzymes, and anticancer drug targets. Furthermore, the variation resulted in resistance by regulating DNA damage repair, downstream adaptive response (apoptosis, autophagy, and oncogenic bypass signaling), cell stemness, tumor immune microenvironment, and exosomal non-coding RNA. It is highlighted that several small molecules targeting m6A regulators have shown significant potential for overcoming drug resistance in different cancer categories. Further inhibitors and activators of RNA m6A-modified proteins are expected to provide novel anticancer drugs, delivering the therapeutic potential for addressing the challenge of resistance in clinical resistance.


Asunto(s)
Adenosina , Neoplasias , Humanos , Adenosina/metabolismo , Metiltransferasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , ARN/metabolismo , Resistencia a Antineoplásicos/genética , Microambiente Tumoral
8.
Cancer Cell Int ; 21(1): 359, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233675

RESUMEN

BACKGROUND: A large number of patients with stage II/III colorectal cancer (CRC) have a high recurrence rate after radical resection. We aimed to develop a novel tool to stratify patients with different recurrence-risk for optimizing decision-making in post-operative surveillance and therapeutic regimens. METHODS: We retrospectively enrolled four independent cohorts from the Gene Expression Omnibus and 66 CRC tissues from our hospital. The initial signature discovery was conducted in GSE143985 (n = 91). This was followed by independent validation of this signature in GSE17536 (n = 111), GSE29621 (n = 40), and GSE92921 (n = 59). Further experimental validation using qRT-PCR assays (n = 66) was performed to ensure the robustness and clinical feasible of this signature. RESULTS: We developed a novel recurrence-related signature consisting of six genes. This signature was validated to be significantly associated with dismal recurrence-free survival in five cohorts GSE143985 (HR: 4.296 [2.612-7.065], P < 0.0001), GSE17536 (HR: 2.354 [1.662-3.334], P < 0.0001), GSE29621 (HR: 3.934 [1.622-9.539], P = 0.0024), GSE92921 (HR: 7.080 [2.011-24.924], P = 0.0023), and qPCR assays (HR: 3.654 [2.217-6.020], P < 0.0001). This signature was also proven to be an independent recurrent factor. More importantly, this signature displayed excellent discrimination and calibration in predicting the recurrence-risk at 1-5 years, with most AUCs were above 0.9, average C-index for the five cohorts was 0.8795, and near-perfect calibration. CONCLUSIONS: We discovered and experimental validated a novel gene signature with stable and powerful performance for identifying patients at high recurrence-risk in stage II/III CRC.

9.
Cell Signal ; 114: 110967, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949382

RESUMEN

BACKGROUND: Multiple PDZ Domain Crumbs Cell Polarity Complex Component (MPDZ) is involved in a few human cancers. However, the features and potential mechanisms of MPDZ in progression of colorectal cancer (CRC) remains unknown. METHODS: The prognostic role of MPDZ in CRC was determined by Kaplan-Meier and univariate regression analysis. Enrichment analysis was performed to characterize crucial pathways of MPDZ. Immune infiltration and immunotherapeutic outcome were further evaluated. CCK8, EDU, transwell, and wound healing assay were used to assess the influence of MPDZ on pernicious performance of CRC cells. CD8+ T cells and CRC cells were co-cultured to explore the effect of MPDZ on the tumor microenvironment. qRT-PCR, western blot, immunoprecipitation (IP), and methylated RNA immunoprecipitation (me-RIP) were implemented in seeking for the potential mechanisms of MPDZ in CRC. RESULTS: CRC patients with elevated MPDZ expression suffered from significantly worse prognosis. Enrichment analysis revealed that MPDZ involved in pathways related to metastasis and cell cycle in CRC. In addition, MPDZ expression were related to several immunoinhibitors and had the ability to predict immunotherapy response. Finally, in vitro assays demonstrated that MPDZ knockdown inhibited migration, invasion and immune evasion of CRC cells. Mechanistically, MPDZ knockdown enhanced YAP1 phosphorylation by increased LATS1 expression. Moreover, m6A-MPDZ mRNA may be recognized and degraded by m6A recognition protein YTHDF2. CONCLUSIONS: MPDZ was critical for CRC development and could be a promising candidate for the treatment of CRC patients.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Humanos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Proteínas de la Membrana/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Microambiente Tumoral , Proteínas Señalizadoras YAP/metabolismo
10.
Cell Prolif ; : e13694, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38938061

RESUMEN

Pancreatic cancer cells have a much higher metabolic demand than that of normal cells. However, the abundant interstitium and lack of blood supply determine the lack of nutrients in the tumour microenvironment. Although pancreatic cancer has been reported to supply extra metabolic demand for proliferation through autophagy and other means, the specific regulatory mechanisms have not yet been elucidated. In this study, we focused on transcription factor EB (TFEB), a key factor in the regulation of autophagy, to explore its effect on the phenotype and role in the unique amino acid utilisation pattern of pancreatic cancer cells (PCCs). The results showed that TFEB, which is generally highly expressed in pancreatic cancer, promoted the proliferation and metastasis of PCCs. TFEB knockdown inhibited the proliferation and metastasis of PCCs by blocking the catabolism of branched-chain amino acids (BCAAs). Concerning the mechanism, we found that TFEB regulates the catabolism of BCAAs by regulating BCAT1, a key enzyme in BCAA metabolism. BCAA deprivation alone did not effectively inhibit PCC proliferation. However, BCAA deprivation combined with eltrombopag, a drug targeting TFEB, can play a two-pronged role in exogenous supply deprivation and endogenous utilisation blockade to inhibit the proliferation of pancreatic cancer to the greatest extent, providing a new therapeutic direction, such as targeted metabolic reprogramming of pancreatic cancer.

11.
Arthritis Rheumatol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751101

RESUMEN

OBJECTIVE: Accurately predicting knee osteoarthritis (KOA) is essential for early detection and personalized treatment. We aimed to develop and test an MRI-based Joint Space Radiomic Model (JS-RM) to predict radiographic KOA incidence through neural networks by integrating meniscus and femorotibial cartilage radiomic features. METHODS: In the Osteoarthritis Initiative cohort, knees without radiographic KOA at baseline but at high risk for radiographic KOA were included. Case knees developed radiographic KOA whereas control knees did not over 4-year. We randomly split the knees into development and test cohorts (D/T=8/2) and extracted features from baseline 3D-DESS-sequence MRI. Model performance was evaluated using an area under the receiver operating characteristic curve (AUC), sensitivity, and specificity in both cohorts. Nine resident surgeons performed the reader experiment without/with the JS-RM aid. RESULTS: Our study included 549 knees in the development cohort (275 cases vs. 274 controls) and 137 knees in the test cohort (68 cases vs. 69 controls). In the test cohort, JS-RM had a favorable accuracy for predicting the radiographic KOA incidence with an AUC of 0.931 (95%CI: 0.876-0.963), a sensitivity of 84.4% (95%CI: 83.9%-84.9%), and a specificity of 85.6% (95%CI: 85.2%-86.0%). The mean specificity and sensitivity of resident surgeons through MRI reading in predicting radiographic KOA incidence were increased from 0.474 (95%CI: 0.333-0.614) and 0.586 (95%CI: 0.429-0.743) without the assistance of JS-RM to 0.874 (95%CI: 0.847-0.901) and 0.812 (95%CI: 0.742-0.881) with JS-RM assistance, respectively (p<.001). CONCLUSION: JS-RM integrating the features of the meniscus and cartilage showed improved predictive values in radiographic KOA incidence.

12.
Artículo en Inglés | MEDLINE | ID: mdl-24098173

RESUMEN

In the title compound, {(C4H12N)[Mn(HCO2)3]} n , the Mn(II) atom lies on an inversion centre and is coordinated by O-atom donors from the three double-bridging formate ligands, one of which lies across a crystallographic mirror plane, giving a slightly distorted octahedral coordination sphere. A three-dimensional NaCl-type framework is generated in which the tetra-methyl-ammonium cations, which lie across mirror planes and occupy the cavities in the polymer structure, form weak C-H⋯O hydrogen bonds with the formate ligands.

13.
iScience ; 26(2): 105959, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36756379

RESUMEN

Striving to optimize surgical outcomes, the Enhanced Recovery After Surgery (ERAS) pathway mitigates patients' stress through the implementation of evidence-based practices during the pre-, intra-, and postoperative periods. Intestinal flora is a sophisticated ecosystem integrating with the host and the external environment, which serves as a mediator in diverse interventions of ERAS to regulate human metabolism and inflammation. This review linked gut microbes and their metabolites with ERAS interventions, offering novel high-quality investigative proponents for ERAS. ERAS could alter the composition and function of intestinal flora in patients by alleviating various perioperative stress responses. Modifying gut flora through multiple modalities, such as diet and nutrition, to accelerate recovery might be a complementary approach when exploring novel ERAS initiatives. Meanwhile, the pandemic of COVID-19 and the availability of promising qualitative evidence created both challenges and opportunities for the establishment of ERAS mode.

14.
Bone Rep ; 18: 101667, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36909666

RESUMEN

Osteoarthritis (OA) is the most prevalent musculoskeletal disease characterized by multiple joint structure damages, including articular cartilage, subchondral bone and synovium, resulting in disability and economic burden. Bone marrow lesions (BMLs) are common and important magnetic resonance imaging (MRI) features in OA patients. Basic and clinical research on subchondral BMLs in the pathogenesis of OA has been a hotspot. New evidence shows that subchondral bone degeneration, including BML and angiogenesis, occurs not only at or after cartilage degeneration, but even earlier than cartilage degeneration. Although BMLs are recognized as important biomarkers for OA, their exact roles in the pathogenesis of OA are still unclear, and disputes about the clinical impact and treatment of BMLs remain. This review summarizes the current basic and clinical research progress of BMLs. We particularly focus on molecular pathways, cellular abnormalities and microenvironmental changes of subchondral bone that contributed to the formation of BMLs, and emphasize the crosstalk between subchondral bone and cartilage in OA development. Finally, potential therapeutic strategies targeting BMLs in OA are discussed, which provides novel strategies for OA treatment.

15.
Cell Death Dis ; 13(6): 539, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35676257

RESUMEN

Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Comunicación Celular/genética , Exosomas/genética , Humanos , Neoplasias/genética , ARN Circular/genética
16.
Front Cell Dev Biol ; 10: 790214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252170

RESUMEN

Studies have demonstrated that non-MSI-H/pMMR colorectal cancer (CRC) has a worse prognosis and relapse rate than microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) CRC. Hence, searching for a novel tool to advance the prognostic management of non-MSI-H/pMMR CRC is vital. In this study, using three independent public cohorts and a clinical in-house cohort, we developed and validated a microsatellite stable-associated signature (MSSAS). The initial signature establishment was performed in GSE39582 (n = 454). This was followed by independent validation of this signature in The Cancer Genome Atlas-CRC (n = 312), GSE39084 (n = 54), and in-house cohort (n = 146). As a result, MSSAS was proven to be an independent risk factor for overall survival and relapse-free survival in non-MSI-H/pMMR CRC. Receiver operating characteristic analysis showed that MSSAS had a stable and accurate performance in all cohorts for 1, 3, and 5 years, respectively. Further analysis suggested that MSSAS performed better than age, gender, and the T, N, M, and AJCC stages, adjuvant chemotherapy, tumor mutation burden, neoantigen, and TP53, KRAS, BRAF, and PIK3CA mutations. The clinical validation was executed to further ensure the robustness and clinical feasibility of this signature. In conclusion, MSSAS might be a robust and promising biomarker for advancing clinical management of non-MSI-H/pMMR CRC.

17.
Cell Death Dis ; 13(11): 925, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335094

RESUMEN

The term ferroptosis was put forward in 2012 and has been researched exponentially over the past few years. Ferroptosis is an unconventional pattern of iron-dependent programmed cell death, which belongs to a type of necrosis and is distinguished from apoptosis and autophagy. Actuated by iron-dependent phospholipid peroxidation, ferroptosis is modulated by various cellular metabolic and signaling pathways, including amino acid, lipid, iron, and mitochondrial metabolism. Notably, ferroptosis is associated with numerous diseases and plays a double-edged sword role. Particularly, metastasis-prone or highly-mutated tumor cells are sensitive to ferroptosis. Hence, inducing or prohibiting ferroptosis in tumor cells has vastly promising potential in treating drug-resistant cancers. Immunotolerant cancer cells are not sensitive to the traditional cell death pathway such as apoptosis and necroptosis, while ferroptosis plays a crucial role in mediating tumor and immune cells to antagonize immune tolerance, which has broad prospects in the clinical setting. Herein, we summarized the mechanisms and delineated the regulatory network of ferroptosis, emphasized its dual role in mediating immune tolerance, proposed its significant clinical benefits in the tumor immune microenvironment, and ultimately presented some provocative doubts. This review aims to provide practical guidelines and research directions for the clinical practice of ferroptosis in treating immune-resistant tumors.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Necrosis , Neoplasias/metabolismo , Hierro/metabolismo , Tolerancia Inmunológica , Microambiente Tumoral
18.
Front Immunol ; 13: 953405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958606

RESUMEN

The interplay between long non-coding RNAs (lncRNAs) and the Notch pathway involves a variety of malignancies. However, Notch-derived lncRNAs and their latent clinical significance remain elusive in colorectal cancer (CRC). In this study, we introduced a framework that could screen Notch-derived lncRNAs (named "NLncer") and ultimately identified 24 NLncers. To further explore the clinical significance of these NLncers, we performed LASSO and Cox regression in TCGA-CRC cohort (n = 584) and then retained six lncRNAs tightly associated with prognosis. The final model (termed "NLncS") was subsequently tested in GSE38832 (n = 122), GSE39582 (n = 573), and an in-house clinical cohort (n = 115). Ultimately, our NLncS model could serve as an independent risk factor and afford a robust performance for assessing the prognosis of CRC patients. Additionally, patients with high NLncS risk scores were characterized by upregulation of immune pathways, strong immunogenicity, abundant CD8 + T-cell infiltration, and potentially higher response rates to CTLA4 blockers, which turned out to be suitable for immunotherapy. Aiming at globally observing the characteristics of high-risk patients, somatic mutation and methylation modification analysis provide us with evidence at the genomic and transcriptomic levels. To facilitate the clinical transformability, we mined deeply into the sensitive compounds targeting high-risk individuals and identified dasatinib as a candidate agent for patients with a high Notch risk score. In conclusion, our NLncS model is a promising biomarker for optimizing the clinical management of CRC patients.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral/genética
19.
Theranostics ; 12(14): 6273-6290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168626

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy represents a landmark advance in personalized cancer treatment. CAR-T strategy generally engineers T cells from a specific patient with a new antigen-specificity, which has achieved considerable success in hematological malignancies, but scarce benefits in solid tumors. Recent studies have demonstrated that tumor immune microenvironment (TIME) cast a profound impact on the immunotherapeutic response. The immunosuppressive landscape of TIME is a critical obstacle to the effector activity of CAR-T cells. Nevertheless, every cloud has a silver lining. The immunosuppressive components also shed new inspiration on reshaping a friendly TIME by targeting them with engineered CARs. Herein, we summarize recent advances in disincentives of TIME and discuss approaches and technologies to enhance CAR-T cell efficacy via addressing current hindrances. Simultaneously, we firmly believe that by parsing the immunosuppressive components of TIME, rationally manipulating the complex interactions of immunosuppressive components, and optimizing CAR-T cell therapy for each patient, the CAR-T cell immunotherapy responsiveness for solid malignancies will be substantially enhanced, and novel therapeutic targets will be revealed.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Terapia de Inmunosupresión , Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
20.
Front Cardiovasc Med ; 9: 865096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571180

RESUMEN

Background: Dilated cardiomyopathy (DCM) is characterized by left ventricular dilatation and systolic dysfunction. The pathogenesis and etiologies of DCM remain elusive. This study aims to identify the key genes to construct a genetic diagnosis model of DCM. Methods: A total of 257 DCM samples from five independent cohorts were enrolled. The Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify the key modules associated with DCM. The latent mechanisms and protein-protein interaction network underlying the key modules were further revealed. Subsequently, we developed and validated a LASSO diagnostic model in five independent cohorts. Results: Two key modules were identified using WGCNA. Novel mechanisms related to the extracellular, mitochondrial matrix or IL-17 signaling pathway were pinpointed, which might significantly influence DCM. Besides, 23 key genes were screened out by combining WGCNA and differential expression analysis. Based on the key genes, a genetic diagnosis model was constructed and validated using five cohorts with excellent AUCs (0.975, 0.954, 0.722, 0.850, 0.988). Finally, significant differences in immune infiltration were observed between the two groups divided by the diagnostic model. Conclusion: Our study revealed several novel pathways and key genes to provide potential targets and biomarkers for DCM treatment. A key genes' diagnosis model was built to offer a new tool for diagnosing DCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA