Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 98(2): e0165523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38214547

RESUMEN

Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.


Asunto(s)
Infecciones por VIH , VIH-1 , Provirus , Niño , Femenino , Humanos , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Carga Viral , Integración Viral
2.
J Immunol ; 208(7): 1700-1710, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35264460

RESUMEN

One key barrier to curative therapies for HIV is the limited understanding of HIV persistence. HIV provirus integration sites (ISs) within BACH2 are common, and almost all sites mapped to date are located upstream of the start codon in the same transcriptional orientation as the gene. These unique features suggest the possibility of insertional mutagenesis at this location. Using CRISPR/Cas9-based homology-directed repair in primary human CD4+ T cells, we directly modeled the effects of HIV integration within BACH2 Integration of the HIV long terminal repeat (LTR) and major splice donor increased BACH2 mRNA and protein levels, altered gene expression, and promoted selective outgrowth of an activated, proliferative, and T regulatory-like cell population. In contrast, introduction of the HIV-LTR alone or an HIV-LTR-major splice donor construct into STAT5B, a second common HIV IS, had no functional impact. Thus, HIV LTR-driven BACH2 expression modulates T cell programming and leads to cellular outgrowth and unique phenotypic changes, findings that support a direct role for IS-dependent HIV-1 persistence.


Asunto(s)
Sistemas CRISPR-Cas , VIH-1 , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , Humanos , Integración Viral
3.
J Virol ; 88(1): 354-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155391

RESUMEN

Reverse transcription is an important early step in retrovirus replication and is a key point targeted by evolutionarily conserved host restriction factors (e.g., APOBEC3G, SamHD1). Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a major target of antiretroviral drugs, and concerns regarding drug resistance and off-target effects have led to continued efforts for identifying novel approaches to targeting HIV-1 RT. Several observations, including those obtained from monocyte-derived macrophages, have argued that ribonucleotides and their analogs can, intriguingly, impact reverse transcription. For example, we have previously demonstrated that 5-azacytidine has its greatest antiviral potency during reverse transcription by enhancement of G-to-C transversion mutations. In the study described here, we investigated a panel of ribonucleoside analogs for their ability to affect HIV-1 replication during the reverse transcription process. We discovered five ribonucleosides-8-azaadenosine, formycin A, 3-deazauridine, 5-fluorocytidine, and 2'-C-methylcytidine-that possess anti-HIV-1 activity, and one of these (i.e., 3-deazauridine) has a primary antiviral mechanism that involves increased HIV-1 mutational loads, while quantitative PCR analysis determined that the others resulted in premature chain termination. Taken together, our findings provide the first demonstration of a series of ribonucleoside analogs that can target HIV-1 reverse transcription with primary antiretroviral mechanisms that include premature termination of viral DNA synthesis or enhanced viral mutagenesis.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Ribonucleósidos/farmacología , Secuencia de Bases , Cartilla de ADN , Células HEK293 , VIH-1/genética , VIH-1/fisiología , Humanos , Reacción en Cadena de la Polimerasa , Transcripción Genética , Replicación Viral/efectos de los fármacos
4.
Res Sq ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947061

RESUMEN

Hypermutated proviruses, which arise in a single HIV replication cycle when host antiviral APOBEC3 proteins introduce extensive G-to-A mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). But, the within-host evolutionary origins of hypermutated sequences are incompletely understood because phylogenetic inference algorithms, which assume that mutations gradually accumulate over generations, incorrectly reconstruct their ancestor-descendant relationships. Using >1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median 18 years of follow-up - including plasma HIV RNA sequences collected over a median 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median 9 years on ART - we evaluated three approaches for removing hypermutation from nucleotide alignments. Our goals were to 1) reconstruct accurate phylogenies that can be used for molecular dating and 2) phylogenetically infer the integration dates of hypermutated proviruses persisting during ART. Two of the tested approaches (stripping all positions containing putative APOBEC3 mutations from the alignment, or replacing individual putative APOBEC3 mutations in hypermutated sequences with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and brought env -intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these corrected trees produced integration date estimates for env -intact proviruses that were highly concordant with those from benchmark trees that excluded hypermutated sequences, indicating that the corrected trees can be used for molecular dating. Use of these trees to infer the integration dates of hypermutated proviruses persisting during ART revealed that these spanned a wide age range, with the oldest ones dating to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral pool immediately following infection, and can persist for decades. In two of the six participants, hypermutated proviruses differed from env -intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. These simple approaches to reconstruct hypermutated provirus' evolutionary histories, allow insights into their in vivo origins and longevity, towards a more comprehensive understanding of HIV persistence during ART.

5.
Bioorg Med Chem ; 21(22): 7222-8, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24120088

RESUMEN

The nucleoside analog 5,6-dihydro-5-aza-2'-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C mutations predominated with the KP-1212-resveratrol combination. These observations represent the first demonstration of a mild anti-HIV-1 mutagen potentiating the antiretroviral activity of RNRIs and encourage the clinical translation of enhanced viral mutagenesis in treating HIV-1 infection.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Desoxicitidina/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , VIH-1/efectos de los fármacos , Ribonucleótido Reductasas/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/farmacología , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , VIH-1/enzimología , VIH-1/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutación , Resveratrol , Ribonucleótido Reductasas/metabolismo , Estilbenos/química , Estilbenos/farmacología , Proteínas Virales/metabolismo , Proteína Fluorescente Roja
6.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645749

RESUMEN

Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.

7.
J Virol ; 83(22): 11950-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19726509

RESUMEN

Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2'-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription.


Asunto(s)
Fármacos Anti-VIH/farmacología , Azacitidina/farmacología , VIH-1/efectos de los fármacos , Línea Celular , VIH-1/patogenicidad , Humanos , Mutagénesis/efectos de los fármacos , ARN Viral/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos
8.
PLoS One ; 12(10): e0182443, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29045410

RESUMEN

Biological sex differences affect the course of HIV infection, with untreated women having lower viral loads compared to their male counterparts but, for a given viral load, women have a higher rate of progression to AIDS. However, the vast majority of data on viral evolution, a process that is clearly impacted by host immunity and could be impacted by sex differences, has been derived from men. We conducted an intensive analysis of HIV-1 gag and env-gp120 evolution taken over the first 6-11 years of infection from 8 Women's Interagency HIV Study (WIHS) participants who had not received combination antiretroviral therapy (ART). This was compared to similar data previously collected from men, with both groups infected with HIV-1 subtype B. Early virus populations in men and women were generally homogenous with no differences in diversity between sexes. No differences in ensuing nucleotide substitution rates were found between the female and male cohorts studied herein. As previously reported for men, time to peak diversity in env-gp120 in women was positively associated with time to CD4+ cell count below 200 (P = 0.017), and the number of predicted N-linked glycosylation sites generally increased over time, followed by a plateau or decline, with the majority of changes localized to the V1-V2 region. These findings strongly suggest that the sex differences in HIV-1 disease progression attributed to immune system composition and sensitivities are not revealed by, nor do they impact, global patterns of viral evolution, the latter of which proceeds similarly in women and men.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Caracteres Sexuales , Estudios de Cohortes , Progresión de la Enfermedad , Evolución Molecular , Femenino , Glicosilación , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/genética , Humanos , Funciones de Verosimilitud , Masculino , Nucleótidos/genética , Filogenia , Factores de Tiempo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
9.
J Mol Biol ; 425(1): 41-53, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23084856

RESUMEN

Differences in replication fidelity, as well as mutator and antimutator strains, suggest that virus mutation rates are heritable and prone to natural selection. Human immunodeficiency virus type 1 (HIV-1) has many distinct advantages for the study of mutation rate optimization given the wealth of structural and biochemical data on HIV-1 reverse transcriptase (RT) and mutants. In this study, we conducted parallel analyses of mutation rate and viral fitness. In particular, a panel of 10 RT mutants-most having drug resistance phenotypes-was analyzed for their effects on viral fidelity and fitness. Fidelity differences were measured using single-cycle vector assays, while fitness differences were identified using ex vivo head-to-head competition assays. As anticipated, virus mutants possessing either higher or lower fidelity had a corresponding loss in fitness. While the virus panel was not chosen randomly, it is interesting that it included more viruses possessing a mutator phenotype rather than viruses possessing an antimutator phenotype. These observations provide the first description of an interrelationship between HIV-1 fitness and mutation rate and support the conclusion that mutator and antimutator phenotypes correlate with reduced viral fitness. In addition, the findings here help support a model in which fidelity comes at a cost of replication kinetics and may help explain why retroviruses like HIV-1 and RNA viruses maintain replication fidelity near the extinction threshold.


Asunto(s)
Transcriptasa Inversa del VIH/genética , VIH-1/fisiología , Tasa de Mutación , Replicación Viral , Farmacorresistencia Viral , VIH-1/genética , Humanos , Mutación , Fenotipo
10.
Trends Microbiol ; 21(2): 56-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23195922

RESUMEN

The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population noninfectious - known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt on clinical translation. More recent studies of the apolipoprotein B mRNA editing complex 3 (APOBEC3) proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model.


Asunto(s)
Genes Letales , VIH-1/genética , Mutagénesis , Humanos , Mutación
11.
J Mol Biol ; 419(3-4): 158-70, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22426127

RESUMEN

RNA virus population dynamics are complex, and sophisticated approaches are needed in many cases for therapeutic intervention. One such approach, termed lethal mutagenesis, is directed at targeting the virus population structure for extinction or error catastrophe. Previous studies have demonstrated the concept of this approach with human immunodeficiency virus type 1 (HIV-1) by use of chemical mutagens [i.e., 5-azacytidine (5-AZC)] as well as by host factors with mutagenic properties (i.e., APOBEC3G). In this study, these two unrelated mutagenic agents were used concomitantly to investigate the interplay of these distinct mutagenic mechanisms. Specifically, an HIV-1 was produced from APOBEC3G (A3G)-expressing cells and used to infect permissive target cells treated with 5-AZC. Reduced viral infectivity and increased viral mutagenesis were observed with both the viral mutagen (i.e., G-to-C mutations) and the host restriction factor (i.e., G-to-A mutations); however, when combined, they had complex interactions. Intriguingly, nucleotide sequence analysis revealed that concomitant HIV-1 exposure to both 5-AZC and A3G resulted in an increase in G-to-A viral mutagenesis at the expense of G-to-C mutagenesis. A3G catalytic activity was required for the diminution in G-to-C mutagenesis. Taken together, our findings provide the first demonstration for potentiation of the mutagenic effect of a cytosine analog by A3G expression, resulting in concomitant HIV-1 lethal mutagenesis.


Asunto(s)
Azacitidina/farmacología , Citidina Desaminasa/metabolismo , VIH-1/genética , Mutagénesis , Mutágenos/farmacología , ARN Viral/genética , Desaminasa APOBEC-3G , Línea Celular , Citidina Desaminasa/genética , VIH-1/metabolismo , VIH-1/fisiología , Humanos , Análisis de Secuencia de ARN , Replicación Viral/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA