Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 298(3): 101711, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150745

RESUMEN

Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide­binding oligomerization domain, leucine rich repeat, and pyrin domain­containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.


Asunto(s)
Inflamación , Macrófagos , Sirtuinas , Animales , Citoplasma/metabolismo , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Obesidad/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
2.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335119

RESUMEN

Prostate and bladder cancers are commonly diagnosed malignancies in men. Several nitric oxide donor compounds with strong antitumor activity have been reported. Thus, continuing with our efforts to explore the chemical space around bioactive furoxan moiety, multicomponent reactions were employed for the rapid generation of molecular diversity and complexity. We herein report the use of Ugi and Groebke-Blackburn-Bienaymé multicomponent reactions under efficient, safe, and environmentally friendly conditions to synthesize a small collection of nitric-oxide-releasing molecules. The in vitro antiproliferative activity of the synthesized compounds was measured against two different human cancer cell lines, LNCaP (prostate) and T24 (bladder). Almost all compounds displayed antiproliferative activity against both cancer cell lines, providing lead compounds with nanomolar GI50 values against the cancer bladder cell line with selectivity indices higher than 10.


Asunto(s)
Neoplasias , Donantes de Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Oxadiazoles
3.
Bioorg Med Chem ; 28(20): 115700, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069076

RESUMEN

The aggregation of ß-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of ß-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-ß-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aß1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aß1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal ß-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Naftalenos/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Relación Estructura-Actividad , Termodinámica
4.
J Org Chem ; 82(10): 5328-5336, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28467064

RESUMEN

Herein we describe a salicylaldehyde-annulation reaction as a plug and play toolkit to diversify the complexity of naturally occurring ketones. The protocol entails the transformation of the polycyclic natural ketone into its propargyl vinyl ether derivative (two synthetic steps) and its microwave-assisted imidazole-catalyzed domino rearrangement to generate the salicylaldehyde ring. This annexed unit allows further synthetic transformations: e.g., the installation of a pharmacophore module to generate natural product-pharmacophore hybrids endowed with unknown biological (pharmaceutical) annotations.

5.
Bioorg Med Chem Lett ; 25(19): 4254-9, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26318991

RESUMEN

GLUT's (facilitative glucose transporters) over-expression in tumor cells has allowed the detection of several cancer types, using a glucose analogue ((18)F-FDG) with PET images, worldwide. New glucose analogs radiolabeled with (99m)Tc could be a less-expensive and more accessible alternative for diagnosis using SPECT imaging. d-Glucose ((99m)Tc-IDAG) and 2-d-deoxyglucose ((99m)Tc-AADG) organometallic complexes were proposed and studied as potential (18)F-FDG surrogates. The glucose complexes were prepared and evaluated as potential cancer imaging agents, in a melanoma tumor model. Iminodiacetic acid (IDA) and aminoacetate (AA) moieties were chosen as chelating system for radiolabeling with (99m)Tc. Tumor uptake of the formed complexes was evaluated in B16 murine cell line in vitro and in vivo in melanoma bearing C57BL/6 mice. In vitro and in vivo studies were conducted with (18)F-FDG in order to compare the uptake of (99m)Tc-glucose complexes in the tumor model. IDAG and AADG compounds were synthesized and radiolabeled with (99m)TcO4(-) to obtain the (99m)Tc-IDAG and (99m)Tc-AADG complexes in high yield and stability. In vitro cell studies showed maximum uptake at 60 min for complexes, (99m)Tc-IDAG and (99m)Tc-AADG, with 6% and 2%, respectively. Biodistribution studies showed high tumor uptake one hour post-injection, reaching tumor-to-muscle ratios of 12.1 ± 3.73 and 2.88 ± 1.40 for (99m)Tc-IDAG and (99m)Tc-AADG, respectively. SPECT and micro-SPECT-CT images acquired after the injection of (99m)Tc-IDAG showed accumulation in tumor sites, suggesting that this glucose complex would be a promising candidate for cancer imaging.


Asunto(s)
Glucosa/química , Glucosa/farmacocinética , Melanoma Experimental/diagnóstico , Compuestos de Organotecnecio/análisis , Compuestos de Organotecnecio/farmacocinética , Animales , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Compuestos de Organotecnecio/síntesis química , Compuestos de Organotecnecio/química , Distribución Tisular
6.
Intensive Care Med Exp ; 12(1): 60, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954052

RESUMEN

BACKGROUND: The spatiotemporal progression and patterns of tissue deformation in ventilator-induced lung injury (VILI) remain understudied. Our aim was to identify lung clusters based on their regional mechanical behavior over space and time in lungs subjected to VILI using machine-learning techniques. RESULTS: Ten anesthetized pigs (27 ± 2 kg) were studied. Eight subjects were analyzed. End-inspiratory and end-expiratory lung computed tomography scans were performed at the beginning and after 12 h of one-hit VILI model. Regional image-based biomechanical analysis was used to determine end-expiratory aeration, tidal recruitment, and volumetric strain for both early and late stages. Clustering analysis was performed using principal component analysis and K-Means algorithms. We identified three different clusters of lung tissue: Stable, Recruitable Unstable, and Non-Recruitable Unstable. End-expiratory aeration, tidal recruitment, and volumetric strain were significantly different between clusters at early stage. At late stage, we found a step loss of end-expiratory aeration among clusters, lowest in Stable, followed by Unstable Recruitable, and highest in the Unstable Non-Recruitable cluster. Volumetric strain remaining unchanged in the Stable cluster, with slight increases in the Recruitable cluster, and strong reduction in the Unstable Non-Recruitable cluster. CONCLUSIONS: VILI is a regional and dynamic phenomenon. Using unbiased machine-learning techniques we can identify the coexistence of three functional lung tissue compartments with different spatiotemporal regional biomechanical behavior.

7.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578482

RESUMEN

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Flavanonas , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Fosforilación , Péptidos beta-Amiloides/metabolismo
8.
J Mol Neurosci ; 73(7-8): 487-515, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37318736

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Astrocitos/metabolismo , Transcriptoma , Modelos Animales de Enfermedad
9.
ACS Pharmacol Transl Sci ; 6(11): 1734-1744, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37982127

RESUMEN

The role of monoamine oxidase A (MAO-A) in the aggressiveness of prostate cancer (PCa) has been established in recent years. The molecular imaging of MAO-A expression could offer a noninvasive tool for the visualization and quantification of highly aggressive PCa. This study reports the synthesis and preclinical evaluation of 11C- and 18F-labeled MAO-A inhibitors as positron emission tomography (PET) tracers for proof-of-concept studies in animal models of PCa. Good manufacturing practice production and quality control of these radiotracers using an automated platform was achieved. PET imaging was performed in an LNCaP tumor model with high MAO-A expression. The tumor-to-muscle (T/M) uptake ratio of [11C]harmine (4.5 ± 0.5) was significantly higher than that for 2-[18F]fluoroethyl-harmol (2.3 ± 0.7) and [11C]clorgyline (2.0 ± 0.1). A comparable ex vivo biodistribution pattern in all radiotracers was observed. Furthermore, the tumor uptake of [11C]harmine showed a dramatic reduction (T/M = 1) in a PC3 tumor model with limited MAO-A expression, and radioactivity uptake in LNCaP tumors was blocked in the presence of nonradioactive harmine. Our findings suggest that [11C]harmine may serve as an attractive PET probe for the visualization of MAO-A expression in highly aggressive PCa. These radiotracers have the potential for clinical translation and may aid in the development of personalized therapeutic strategies for PCa patients.

10.
Res Sq ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502859

RESUMEN

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

11.
Neurochem Int ; 159: 105403, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35853553

RESUMEN

Alzheimer's disease has been considered mostly as a neuronal pathology, although increasing evidence suggests that glial cells might play a key role in the disease onset and progression. In this sense, astrocytes, with their central role in neuronal metabolism and function, are of great interest for increasing our understanding of the disease. Thus, exploring the morphological and functional changes suffered by astrocytes along the course of this disorder has great therapeutic and diagnostic potential. In this work we isolated and cultivated astrocytes from symptomatic 9-10-months-old adult 3xTg-AD mice, with the aim of characterizing their phenotype and exploring their pathogenic potential. These "old" astrocytes occurring in the 3xTg-AD mouse model of Alzheimer's Disease presented high proliferation rate and differential expression of astrocytic markers compared with controls. They were neurotoxic to primary neuronal cultures both, in neuronal-astrocyte co-cultures and when their conditioned media (ACM) was added into neuronal cultures. ACM caused neuronal GSK3ß activation, changes in cytochrome c pattern, and increased caspase 3 activity, suggesting intrinsic apoptotic pathway activation. Exposure of neurons to ACM caused different subcellular responses. ACM application to the somato-dendritic domain in compartmentalised microfluidic chambers caused degeneration both locally in soma/dendrites and distally in axons. However, exposure of axons to ACM did not affect somato-dendritic nor axonal integrity. We propose that this newly described old 3xTg-AD neurotoxic astrocytic population can contribute towards the mechanistic understanding of the disease and shed light on new therapeutical opportunities.


Asunto(s)
Enfermedad de Alzheimer , Síndromes de Neurotoxicidad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo
12.
Bioorg Med Chem Lett ; 21(23): 7102-6, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22014828

RESUMEN

Glucose 9 and 2-deoxyglucose 10 were successfully synthesized and radiolabeled with [(99m)Tc(CO)(3)(H(2)0)(3)](+) intermediate in high yield. The complexes were characterized by HPLC and its stability with histidine over time was challenged. Cell uptake and biodistribution studies in melanoma-bearing C57BL/6 mice were performed. Both compounds showed accumulation in tumor tissue with high tumor-to-muscle ratios. Thus, D-glucose- and D-2-deoxyglucose-(99m)Tc complex could be considered as agents for melanoma diagnosis.


Asunto(s)
Desoxiglucosa , Glucosa , Melanoma/diagnóstico , Compuestos de Organotecnecio , Radiofármacos , Animales , Cromatografía Líquida de Alta Presión , Desoxiglucosa/química , Desoxiglucosa/farmacocinética , Estabilidad de Medicamentos , Glucosa/química , Glucosa/farmacocinética , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/farmacocinética , Distribución Tisular
13.
Redox Biol ; 39: 101833, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352465

RESUMEN

Chronic metabolic diseases, like obesity, type II diabetes and atherosclerosis often involve a low-grade and sterile systemic inflammatory state, in which activation of the pro-inflammatory transcription factor NF-kB and the NLRP3 inflammasome play a major role. It is well established that genetic inhibition of the NLRP3 inflammasome ameliorates acute and chronic inflammation. Indeed, accumulating experimental evidences in murine models and also in humans suggest that inhibition of the NLRP3 inflammasome might be a suitable approach to tackle the deleterious effects of chronic metabolic diseases. In this work, we explored our previously synthesized nitroalkene-Trolox™ derivative named NATx0, as a non-conventional anti-inflammatory strategy to treat chronic inflammatory diseases, such as obesity-induced glucose intolerance. We found that NATx0 inhibited NF-kB nuclear translocation and pro-inflammatory gene expression in macrophages in vitro. In addition, treatment with NATx0 prevented NLRP3 inflammasome activation after LPS/ATP stimulation in macrophages in vitro. When tested acutely in vivo, NATx0 inhibited neutrophil recruitment in zebrafish larvae, and also diminished IL-1ß production after LPS challenge in mice. Finally, when NATx0 was administered chronically to diet-induced obese mice, it decreased muscle tissue inflammation and glucose intolerance, leading to improved glucose homeostasis. In conclusion, we propose that this novel nitroalkene-Trolox derivative is a suitable tool to tackle acute and chronic inflammation in vitro and in vivo mainly due to inhibition of NF-kB/NLRP3 activation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Animales , Intolerancia a la Glucosa/tratamiento farmacológico , Inflamasomas , Inflamación/tratamiento farmacológico , Interleucina-1beta , Lipopolisacáridos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Obesidad/tratamiento farmacológico , Vitamina E , Pez Cebra
14.
Br J Pharmacol ; 176(6): 757-772, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30588602

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis is characterized by chronic low-grade inflammation with concomitant lipid accumulation in the arterial wall. Anti-inflammatory and anti-atherogenic properties have been described for a novel class of endogenous nitroalkenes (nitrated-unsaturated fatty acids), formed during inflammation and digestion/absorption processes. The lipid-associated antioxidant α-tocopherol is transported systemically by LDL particles including to the atheroma lesions. To capitalize on the overlapping and complementary salutary properties of endogenous nitroalkenes and α-tocopherol, we designed and synthesized a novel nitroalkene-α-tocopherol analogue (NATOH) to address chronic inflammation and atherosclerosis, particularly at the lesion sites. EXPERIMENTAL APPROACH: We synthesized NATOH, determined its electrophilicity and antioxidant capacity and studied its effects over pro-inflammatory and cytoprotective pathways in macrophages in vitro. Moreover, we demonstrated its incorporation into lipoproteins and tissue both in vitro and in vivo, and determined its effect on atherosclerosis and inflammatory responses in vivo using the Apo E knockout mice model. KEY RESULTS: NATOH exhibited similar antioxidant capacity to α-tocopherol and, due to the presence of the nitroalkenyl group, like endogenous nitroalkenes, it exerted electrophilic reactivity. NATOH was incorporated in vivo into the VLDL/LDL lipoproteins particles to reach the atheroma lesions. Furthermore, oral administration of NATOH down-regulated NF-κB-dependent expression of pro-inflammatory markers (including IL-1ß and adhesion molecules) and ameliorated atherosclerosis in Apo E knockout mice. CONCLUSIONS AND IMPLICATIONS: In toto, the data demonstrate a novel pharmacological strategy for the prevention of atherosclerosis based on a creative, natural and safe drug delivery system of a non-conventional anti-inflammatory compound (NATOH) with significant potential for clinical application.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , Ciclopentanos/farmacología , Inflamación/tratamiento farmacológico , Nitrocompuestos/farmacología , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/farmacología , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antioxidantes/síntesis química , Antioxidantes/química , Aterosclerosis/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Femenino , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Estructura Molecular , Células RAW 264.7
15.
Eur J Med Chem ; 143: 1888-1902, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129514

RESUMEN

A one-pot efficient, practical and eco-friendly synthesis of tocopherol analogues has been developed using water or solvent free conditions via Passerini and Ugi multicomponent reactions. These reactions can be optimized using microwave irradiation or ultrasound as the energy source. Accordingly, a small library of 30 compounds was prepared for biological tests. The evaluation of the antiproliferative activity in the human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D (breast), and WiDr (colon) provided lead compounds with GI50 values between 1 and 5 µM. A structure-activity relationship is also discussed. One of the studied compounds comes up as a future candidate for the development of potent tocopherol-mimetic therapeutic agents for cancer.


Asunto(s)
Antineoplásicos/farmacología , Tocoferoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tocoferoles/síntesis química , Tocoferoles/química
16.
Sci Rep ; 8(1): 12784, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143727

RESUMEN

Inflammation plays a major role in the onset and development of chronic non-communicable diseases like obesity, cardiovascular diseases and cancer. Combined, these diseases represent the most common causes of death worldwide, thus development of novel pharmacological approaches is crucial. Electrophilic nitroalkenes derived from fatty acids are formed endogenously and exert anti-inflammatory actions by the modification of proteins involved in inflammation signaling cascades. We have developed novel nitroalkenes derived from α-tocopherol aiming to increase its salutary actions by adding anti-inflammatory properties to a well-known nutraceutical. We synthesized and characterized an α-tocopherol-nitroalkene (NATOH) and two hydrosoluble analogues derived from Trolox (NATxME and NATx0). We analyzed the kinetics of the Michael addition reaction of these compounds with thiols in micellar systems aiming to understand the effect of hydrophobic partition on the reactivity of nitroalkenes. We studied NATxME in vitro showing it exerts non-conventional anti-inflammatory responses by inducing Nrf2-Keap1-dependent gene expression and inhibiting the secretion of NF-κB dependent pro-inflammatory cytokines. NATxME was also effective in vivo, inhibiting neutrophil recruitment in a zebrafish model of inflammation. This work lays the foundation for the rational design of a new therapeutic strategy for the prevention and treatment of metabolic and inflammation-related diseases.


Asunto(s)
Alquenos/síntesis química , Alquenos/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Transducción de Señal , Tocoferoles/síntesis química , Tocoferoles/farmacología , Alquenos/química , Animales , Antiinflamatorios/química , Cromanos/síntesis química , Cromanos/química , Cromanos/farmacología , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Micelas , Infiltración Neutrófila/efectos de los fármacos , Células RAW 264.7 , Tocoferoles/química , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA