Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nano Lett ; 19(1): 150-157, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30540195

RESUMEN

Three-dimensional (3D) perovskite materials display remarkable potential in photovoltaics owing to their superior solar-to-electric power conversion efficiency, with current efforts focused on improving stability. Two-dimensional (2D) perovskite analogues feature greater stability toward environmental factors, such as moisture, owing to a hydrophobic organic cation that acts as a spacer between the inorganic layers, which offers a significant advantage over their comparatively less stable 3D analogues. Here, we demonstrate the first example of a formamidinium (FA) containing Dion-Jacobson 2D perovskite material characterized by the BFA n-1Pb nI3 n+1 formulation through employing a novel bifunctional organic spacer (B), namely 1,4-phenylenedimethanammonium (PDMA). We achieve remarkable efficiencies exceeding 7% for (PDMA)FA2Pb3I10 based 2D perovskite solar cells resisting degradation when exposed to humid ambient air, which opens up new avenues in the design of stable perovskite materials.

2.
Angew Chem Int Ed Engl ; 59(36): 15688-15694, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400061

RESUMEN

As a result of their attractive optoelectronic properties, metal halide APbI3 perovskites employing formamidinium (FA+ ) as the A cation are the focus of research. The superior chemical and thermal stability of FA+ cations makes α-FAPbI3 more suitable for solar-cell applications than methylammonium lead iodide (MAPbI3 ). However, its spontaneous conversion into the yellow non-perovskite phase (δ-FAPbI3 ) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α-FAPbI3 perovskite phase by protecting it with a two-dimensional (2D) IBA2 FAPb2 I7 (IBA=iso-butylammonium overlayer, formed via stepwise annealing. The α-FAPbI3 /IBA2 FAPb2 I7 based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h.

3.
Small ; 15(49): e1904746, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31670469

RESUMEN

Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large-scale deployment of PSCs, these components need to be replaced with cost-effective and robust ones that maintain high efficiency while ascertaining long-term operational stability. Here, a simple and low-cost PSC architecture employing dopant-free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full-sun illumination at 60 °C. In addition, the CuSCN/carbon-based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro-MeOTAD/Au based devices degrade severely.

4.
Small ; 14(36): e1802033, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30091843

RESUMEN

Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb-incorporation into the MAPbI3 (MA = CH3 NH3+ ) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI3 layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI3 systems compared to the pristine MAPbI3 . Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.

5.
Angew Chem Int Ed Engl ; 57(43): 14125-14128, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30126024

RESUMEN

The synthesis, characterization, and photovoltaic performance of a series of indacenodithiophene (IDT)-based D-π-A organic dyes with varying electron-accepting units is presented. By control of the electron affinity, perfectly matching energy levels were achieved with a copper(I/II)-based redox electrolyte, reaching a high open-circuit voltage (>1.1 V) while harvesting a large fraction of solar photons at the same time. Besides achieving high power conversion efficiencies (PCEs) for dye-sensitized solar cells (DSCs), that is, 11.2 % under standard AM 1.5 G sunlight, and 28.4 % under a 1000 lux fluorescent light tube, this work provides a possible method for the design and fabrication of low-cost highly efficient DSCs.

6.
Nano Lett ; 16(11): 7155-7162, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27776210

RESUMEN

We report on both the intrinsic and the extrinsic stability of a formamidinium lead bromide [CH(NH2)2PbBr3 = FAPbBr3] perovskite solar cell that yields a high photovoltage. The fabrication of FAPbBr3 devices, displaying an outstanding photovoltage of 1.53 V and a power conversion efficiency of over 8%, was realized by modifying the mesoporous TiO2-FAPbBr3 interface using lithium treatment. Reasons for improved photovoltaic performance were revealed by a combination of techniques, including photothermal deflection absorption spectroscopy (PDS), transient-photovoltage and charge-extraction analysis, and time-integrated and time-resolved photoluminescence. With lithium-treated TiO2 films, PDS reveals that the TiO2-FAPbBr3 interface exhibits low energetic disorder, and the emission dynamics showed that electron injection from the conduction band of FAPbBr3 into that of mesoporous TiO2 is faster than for the untreated scaffold. Moreover, compared to the device with pristine TiO2, the charge carrier recombination rate within a device based on lithium-treated TiO2 film is 1 order of magnitude lower. Importantly, the operational stability of perovskites solar cells examined at a maximum power point revealed that the FAPbBr3 material is intrinsically (under nitrogen) as well as extrinsically (in ambient conditions) stable, as the unsealed devices retained over 95% of the initial efficiency under continuous full sun illumination for 150 h in nitrogen and dry air and 80% in 60% relative humidity (T = ∼60 °C). The demonstration of high photovoltage, a record for FAPbBr3, together with robust stability renders our work of practical significance.

7.
J Am Chem Soc ; 137(51): 16172-8, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26630459

RESUMEN

Four center symmetrical star-shaped hole transporting materials (HTMs) comprising planar triazatruxene core and electron-rich methoxy-engineered side arms have been synthesized and successfully employed in (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells. These HTMs are obtained from relatively cheap starting materials by adopting facile preparation procedure, without using expensive and complicated purification techniques. Developed compounds have suitable highest occupied molecular orbitals (HOMO) with respect to the valence band level of the perovskite, and time-resolved photoluminescence indicates that hole injection from the valence band of perovskite into the HOMO of triazatruxene-based HTMs is relatively more efficient as compared to that of well-studied spiro-OMeTAD. Remarkable power conversion efficiency over 18% was achieved using 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (KR131) with compositive perovskite absorber. This result demonstrates triazatruxene-based compounds as a new class of HTM for the fabrication of highly efficient perovskite solar cells.

8.
Small ; 11(41): 5533-9, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26313216

RESUMEN

Highly ordered 1D TiO2 nanotube arrays are fabricated and applied as nanocontainers and electron transporting material in CH3 NH3 PbI3 perovskite solar cells. The optimized device shows a power conversion efficiency of 14.8%, and improved stability under an illumination of 100 mW cm(-2). This is the best result based on 1D TiO2 nanostructures so far.

9.
Nano Lett ; 14(12): 6991-6, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25392941

RESUMEN

As the photovoltaic performance of a device is strongly influenced by the morphology of perovskite, achieving precise control over the crystal formation of organic-inorganic halide perovskites synthesized in the ambience of chloride ions has garnered much attention. Although the resulting morphology dictates the performance of the device considerably, the understanding of the role of chloride ions has been scant. To unravel this mystery, we investigated three different organic-inorganic halide perovskite materials grown from the chloride-containing precursors under different but optimized conditions. Despite the presence of chloride ions in the reaction mixture, scanning transmission electron microscopy- energy dispersive spectroscopy (STEM-EDS) reveals that the CH3NH3PbI3 perovskites formed are chloride-free. Moreover bright field transmission electron microscopy indicates that chloride ions effect the growth of the CH3NH3PbI3.

10.
Nano Lett ; 14(3): 1190-5, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524200

RESUMEN

We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 °C on a mesoporous insulating template. An ultrathin layer of ZnO between 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.5 µm mesoporous nanoparticle Al2O3 template yields photovoltaic power conversion efficiency (PCE) of 4.2% in liquid DSC. Perovskite absorber (CH3NH3PbI3) based solid state solar cells made with similar ZnO nanostructures lead to a high PCE of 7%.

11.
J Am Chem Soc ; 136(24): 8516-9, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24866942

RESUMEN

A low band gap quinolizino acridine based molecule was designed and synthesized as new hole transporting material for organic-inorganic hybrid lead halide perovskite solar cells. The functionalized quinolizino acridine compound showed an effective hole mobility in the same range of the state-of-the-art spiro-MeOTAD and an appropriate oxidation potential of 5.23 eV vs the vacuum level. The device based on this new hole transporting material achieved high power conversion efficiency of 12.8% under the illumination of 98.8 mW cm(-2), which was better than the well-known spiro-MeOTAD under the same conditions. Moreover, this molecule could work alone without any additives, thus making it to be a promising candidate for solid-state photovoltaic application.

12.
ACS Omega ; 8(20): 17337-17349, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251151

RESUMEN

Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence.

13.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37680545

RESUMEN

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

14.
Sci Adv ; 8(35): eabo3733, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054361

RESUMEN

There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra-aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.

15.
J Phys Chem Lett ; 12(10): 2699-2704, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33703902

RESUMEN

CsPbBr3 has received wide attention due to its superior emission yield and better thermal stability compared to other organic-inorganic lead halide perovskites. In this study, through an interplay of theory and experiments, we investigate the molecular origin of the asymmetric low-temperature photoluminescence spectra of CsPbBr3. We conclude that the origin of this phenomenon lies in a local dipole moment (and the induced Stark effect) due to the preferential localization of Cs+ in either of two off-center positions of the empty space between the surrounding PbBr6 octahedra. With increasing temperature, Cs+ ions are gradually occupying positions closer and closer to the center of the cavities. The gradual loss of ordering in the Cs+ position with increasing temperature is the driving force for the formation of tetragonal-like arrangements within the orthorhombic lattice.

16.
Sci Adv ; 7(17)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893100

RESUMEN

It is well established that the lack of understanding the crystallization process in a two-step sequential deposition has a direct impact on efficiency, stability, and reproducibility of perovskite solar cells. Here, we try to understand the solid-solid phase transition occurring during the two-step sequential deposition of methylammonium lead iodide and formamidinium lead iodide. Using metadynamics, x-ray diffraction, and Raman spectroscopy, we reveal the microscopic details of this process. We find that the formation of perovskite proceeds through intermediate structures and report polymorphs found for methylammonium lead iodide and formamidinium lead iodide. From simulations, we discover a possible crystallization pathway for the highly efficient metastable α phase of formamidinium lead iodide. Guided by these simulations, we perform experiments that result in the low-temperature crystallization of phase-pure α-formamidinium lead iodide.

17.
J Phys Chem Lett ; 11(23): 10188-10195, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205977

RESUMEN

Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.

18.
Adv Mater ; 32(12): e1907757, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32068922

RESUMEN

Passivation of interfacial defects serves as an effective means to realize highly efficient and stable perovskite solar cells (PSCs). However, most molecular modulators currently used to mitigate such defects form poorly conductive aggregates at the perovskite interface with the charge collection layer, impeding the extraction of photogenerated charge carriers. Here, a judiciously engineered passivator, 4-tert-butyl-benzylammonium iodide (tBBAI), is introduced, whose bulky tert-butyl groups prevent the unwanted aggregation by steric repulsion. It is found that simple surface treatment with tBBAI significantly accelerates the charge extraction from the perovskite into the spiro-OMeTAD hole-transporter, while retarding the nonradiative charge carrier recombination. This boosts the power conversion efficiency (PCE) of the PSC from ≈20% to 23.5% reducing the hysteresis to barely detectable levels. Importantly, the tBBAI treatment raises the fill factor from 0.75 to the very high value of 0.82, which concurs with a decrease in the ideality factor from 1.72 to 1.34, confirming the suppression of radiation-less carrier recombination. The tert-butyl group also provides a hydrophobic umbrella protecting the perovskite film from attack by ambient moisture. As a result, the PSCs show excellent operational stability retaining over 95% of their initial PCE after 500 h full-sun illumination under maximum-power-point tracking under continuous simulated solar irradiation.

19.
Research (Wash D C) ; 2019: 8474698, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31549091

RESUMEN

High photovoltages and power conversion efficiencies of perovskite solar cells (PSCs) can be realized by controlling the undesired nonradiative charge carrier recombination. Here, we introduce a judicious amount of guanidinium iodide into mixed-cation and mixed-halide perovskite films to suppress the parasitic charge carrier recombination, which enabled the fabrication of >20% efficient and operationally stable PSCs yielding reproducible photovoltage as high as 1.20 V. By introducing guanidinium iodide into the perovskite precursor solution, the bandgap of the resulting absorber material changed minimally; however, the nonradiative recombination diminished considerably as revealed by time-resolved photoluminescence and electroluminescence studies. Furthermore, using capacitance-frequency measurements, we were able to correlate the hysteresis features exhibited by the PSCs with interfacial charge accumulation. This study opens up a path to realize new record efficiencies for PSCs based on guanidinium iodide doped perovskite films.

20.
Science ; 365(6453): 591-595, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31395783

RESUMEN

Although ß-CsPbI3 has a bandgap favorable for application in tandem solar cells, depositing and stabilizing ß-CsPbI3 experimentally has remained a challenge. We obtained highly crystalline ß-CsPbI3 films with an extended spectral response and enhanced phase stability. Synchrotron-based x-ray scattering revealed the presence of highly oriented ß-CsPbI3 grains, and sensitive elemental analyses-including inductively coupled plasma mass spectrometry and time-of-flight secondary ion mass spectrometry-confirmed their all-inorganic composition. We further mitigated the effects of cracks and pinholes in the perovskite layer by surface treating with choline iodide, which increased the charge-carrier lifetime and improved the energy-level alignment between the ß-CsPbI3 absorber layer and carrier-selective contacts. The perovskite solar cells made from the treated material have highly reproducible and stable efficiencies reaching 18.4% under 45 ± 5°C ambient conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA