Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011209, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897929

RESUMEN

CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-ß, promote the differentiation of CD4+ T cells into a distinct subset α4ß7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , Humanos , Factor de Crecimiento Transformador beta , Tretinoina/farmacología , Diferenciación Celular , Memoria Inmunológica , Receptores CCR5
2.
Infect Immun ; : e0050923, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526063

RESUMEN

Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.

3.
mBio ; 15(6): e0086224, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38767353

RESUMEN

Mammalian target of rapamycin (mTOR) is a key regulator of metabolism in the mammalian cell. Here, we show the essential role for mTOR signaling in the immune response to bacterial infection. Inhibition of mTOR during infection with Staphylococcus aureus revealed that mTOR signaling is required for bactericidal free radical production by phagocytes. Mechanistically, mTOR supported glucose transporter GLUT1 expression, potentially through hypoxia-inducible factor 1α, upon phagocyte activation. Cytokine and chemokine signaling, inducible nitric oxide synthase, and p65 nuclear translocation were present at similar levels during mTOR suppression, suggesting an NF-κB-independent role for mTOR signaling in the immune response during bacterial infection. We propose that mTOR signaling primarily mediates the metabolic requirements necessary for phagocyte bactericidal free radical production. This study has important implications for the metabolic requirements of innate immune cells during bacterial infection as well as the clinical use of mTOR inhibitors.IMPORTANCESirolimus, everolimus, temsirolimus, and similar are a class of pharmaceutics commonly used in the clinical treatment of cancer and the anti-rejection of transplanted organs. Each of these agents suppresses the activity of the mammalian target of rapamycin (mTOR), a master regulator of metabolism in human cells. Activation of mTOR is also involved in the immune response to bacterial infection, and treatments that inhibit mTOR are associated with increased susceptibility to bacterial infections in the skin and soft tissue. Infections caused by Staphylococcus aureus are among the most common and severe. Our study shows that this susceptibility to S. aureus infection during mTOR suppression is due to an impaired function of phagocytic immune cells responsible for controlling bacterial infections. Specifically, we observed that mTOR activity is required for phagocytes to produce antimicrobial free radicals. These results have important implications for immune responses during clinical treatments and in disease states where mTOR is suppressed.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Fagocitos , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Serina-Treonina Quinasas TOR , Staphylococcus aureus/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitos/microbiología , Humanos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Animales , Radicales Libres/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
Microbiol Spectr ; 11(6): e0229923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37933971

RESUMEN

IMPORTANCE: Individuals with diabetes are prone to more frequent and severe infections, with many of these infections being polymicrobial. Polymicrobial infections are frequently observed in skin infections and in individuals with cystic fibrosis, as well as in indwelling device infections. Two bacteria frequently co-isolated from infections are Staphylococcus aureus and Pseudomonas aeruginosa. Several studies have examined the interactions between these microorganisms. The majority of these studies use in vitro model systems that cannot accurately replicate the microenvironment of diabetic infections. We employed a novel murine indwelling device model to examine interactions between S. aureus and P. aeruginosa. Our data show that competition between these bacteria results in reduced growth in a normal infection. In a diabetic infection, we observe increased growth of both microbes and more severe infection as both bacteria invade surrounding tissues. Our results demonstrate that diabetes changes the interaction between bacteria resulting in poor infection outcomes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Pseudomonas aeruginosa , Virulencia , Infecciones Estafilocócicas/microbiología , Infecciones por Pseudomonas/microbiología , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA