Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963412

RESUMEN

Introduction. In India, the SARS-CoV-2 Delta wave (2020-2021) faded away with the advent of the Omicron variants (2021-present). Dengue incidences were observed to be less in Southeast Asia during the active years of the pandemic (2020-2021). However, dengue virus type 3 (DV3) cases were increasingly reported in this region (including India) concurrent with the progression of the Omicron waves since 2022.Hypothesis. What could be the reason(s) behind this unusual DV3 surge after an overall dip in dengue incidences in many parts of Southeast Asia?Aim. We, therefore, investigated the current state of cross-reactivity of prevalent (Omicron era) SARS-CoV-2 serums with different DV serotypes and evaluated the impact of such serums on DV neutralization in cell culture.Methodology. Fifty-five COVID-19 serum samples (January-September 2022) and three pre-pandemic archived serum samples from apparently healthy individuals were tested for DV or SARS-CoV-2 IgM/IgG using the lateral flow immunoassays. DV1-4 virus neutralization tests (VNTs) were done with the SARS-CoV-2 antibody (Ab)-positive serums in Huh7 cells. DV3 envelope (env) gene was PCR amplified and sequenced for three archived DV isolates, one from 2017 and two from 2021.Results. SARS-CoV-2 Ab-positive samples constituted 74.5 % of the serums. Of these, 41.5 % were DV cross-reactive and 58.5 % were not. The DV cross-reactive serums neutralized all DV serotypes (DV1-4), as per previous results and this study. The DV non-cross-reactive serums (58.5 %) also cross-neutralized DV1, 2 and 4 but increased DV3 infectivity by means of antibody-dependent enhancement of infection as evident from significantly higher DV3 titres in VNT compared to control serums. The DV3 envelope was identical among the three isolates, including isolate 1 used in VNTs. Our results suggest that DV cross-reactivity of SARS-CoV-2 serums diminished with the shift from Delta to Omicron prevalence. Such COVID-19 serums (DV non-cross-reactive) might have played a major role in causing DV3 surge during the Omicron waves.Conclusion. Patients suspected of dengue or COVID-19 should be subjected to virus/antigen tests and serological tests for both the diseases for definitive diagnosis, prognosis and disease management.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Reacciones Cruzadas , Virus del Dengue , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/virología , COVID-19/epidemiología , COVID-19/sangre , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Virus del Dengue/genética , Virus del Dengue/inmunología , Virus del Dengue/clasificación , India/epidemiología , Dengue/virología , Dengue/sangre , Dengue/epidemiología , Dengue/inmunología , Pruebas de Neutralización , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre
2.
J Control Release ; 367: 148-157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228272

RESUMEN

Antibody-drug conjugates (ADCs) are a rapidly expanding class of anticancer therapeutics, with 14 ADCs already approved worldwide. We developed unique linker technologies for the bioconjugation of drug molecules with controlled-release applications. We synthesized cathepsin-cleavable ADCs using a dimeric prodrug system based on a self-immolative dendritic scaffold, resulting in a high drug-antibody ratio (DAR) with the potential to reach 16 payloads due to its dendritic structure, increased stability in the circulation and efficient release profile of a highly cytotoxic payload at the targeted site. Using our novel cleavable linker technologies, we conjugated the anti-human epidermal growth factor receptor 2 (anti-HER2) antibody, trastuzumab, with topoisomerase I inhibitors, exatecan or belotecan. The newly synthesized ADCs were tested in vitro on mammary carcinoma cells overexpressing human HER2, demonstrating a substantial inhibitory effect on the proliferation of HER2-positive cells. Importantly, a single dose of our trastuzumab-based ADCs administered in vivo to mice bearing HER2-positive tumors, showed a dose-dependent inhibition of tumor growth and survival benefit, with the most potent antitumor effects observed at 10 mg/kg, which resulted in complete tumor regression and survival of 100% of the mice. Overall, our novel dendritic technologies using the protease-cleavable Val-Cit linker present an opportunity for the development of highly selective and potent controlled-released therapeutic payloads. This strategy could potentially lead to the development of novel and effective ADC technologies for patients diagnosed with HER2-positive cancers. Moreover, our proposed ADC linker technology can be implemented in additional medical conditions such as other malignancies as well as autoimmune diseases that overexpress targets, other than HER2.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Humanos , Ratones , Animales , Inhibidores de Topoisomerasa I/uso terapéutico , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Trastuzumab/química , Antineoplásicos/química , Receptor ErbB-2/metabolismo , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA