Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(11): e150-e175, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781298

RESUMEN

HIV type 1 (HIV-1) is the causative agent of AIDS. Since the start of the epidemic, HIV/AIDS has been responsible for ≈40 million deaths. Additionally, an estimated 39 million people are currently infected with the virus. HIV-1 primarily infects immune cells, such as CD4+ (cluster of differentiation 4+) T lymphocytes (T cells), and as a consequence, the number of CD4+ T cells progressively declines in people living with HIV. Within a span of ≈10 years, HIV-1 infection leads to the systemic failure of the immune system and progression to AIDS. Fortunately, potent antiviral therapy effectively controls HIV-1 infection and prevents AIDS-related deaths. The efficacy of the current antiviral therapy regimens has transformed the outcome of HIV/AIDS from a death sentence to a chronic disease with a prolonged lifespan of people living with HIV. However, antiviral therapy is not curative, is challenged by virus resistance, can be toxic, and, most importantly, requires lifelong adherence. Furthermore, the improved lifespan has resulted in an increased incidence of non-AIDS-related morbidities in people living with HIV including cardiovascular diseases, renal disease, liver disease, bone disease, cancer, and neurological conditions. In this review, we summarize the current state of knowledge of the cardiovascular comorbidities associated with HIV-1 infection, with a particular focus on hypertension. We also discuss the potential mechanisms known to drive HIV-1-associated hypertension and the knowledge gaps in our understanding of this comorbid condition. Finally, we suggest several directions of future research to better understand the factors, pathways, and mechanisms underlying HIV-1-associated hypertension in the post-antiviral therapy era.


Asunto(s)
Infecciones por VIH , Hipertensión , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Factores de Riesgo , VIH-1/patogenicidad , Animales
2.
J Biol Chem ; 300(7): 107438, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838778

RESUMEN

HIV-1 integration into the human genome is dependent on 3'-processing of the viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower (approximately 2-2.5-fold) than the unprocessed HIV-1 DNA by TREX1. The kcat values of human TREX1 for the processed U5 and U3 DNA substrates were 3.8 s-1 and 4.5 s-1, respectively. In contrast, the unprocessed U5 and U3 substrates were cleaved at 10.2 s-1 and 9.8 s-1, respectively. The efficiency of degradation (kcat/Km) of the 3'-processed DNA (U5-70.2 and U3-28.05 pM-1s-1) was also significantly lower than the unprocessed DNA (U5-103.1 and U3-65.3 pM-1s-1). Furthermore, the binding affinity (Kd) of TREX1 was markedly lower (∼2-fold) for the 3'-processed DNA than the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.

3.
J Biol Chem ; 300(2): 105605, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159857

RESUMEN

Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.


Asunto(s)
Dipeptidasas , Factor 6 Similar a Kruppel , Transducción de Señal , Factor de Transcripción Sp1 , Animales , Humanos , Ratones , Colágeno/metabolismo , Factor 6 Similar a Kruppel/genética , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
4.
J Virol ; 97(11): e0073223, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37843371

RESUMEN

The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.


Asunto(s)
Ciclofilina A , Infecciones por VIH , VIH-1 , Humanos , Proteínas de la Cápside/genética , Núcleo Celular/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Infecciones por VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Proteínas Virales/metabolismo , Interacciones Huésped-Patógeno
5.
J Virol ; 96(18): e0101122, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094316

RESUMEN

HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.


Asunto(s)
Cromosomas Humanos , VIH-1 , Código de Histonas , Histonas , Nucleosomas , Integración Viral , Cromatina/metabolismo , Cromosomas Humanos/virología , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por VIH/virología , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , Histonas/química , Histonas/metabolismo , Humanos , Lisina/genética , Metilación , Nucleosomas/genética , Nucleosomas/metabolismo , Nucleosomas/virología , Integración Viral/genética
6.
J Virol ; 95(17): e0055521, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34105995

RESUMEN

Three prime repair exonuclease 1 (TREX1) is the most abundant 3'→5' exonuclease in mammalian cells. It has been suggested that TREX1 degrades HIV-1 DNA to enable the virus to evade the innate immune system. However, the exact role of TREX1 during early steps of HIV-1 infection is not clearly understood. In this study, we report that HIV-1 infection is associated with upregulation, perinuclear accumulation, and nuclear localization of TREX1. However, TREX1 overexpression did not affect reverse transcription or nuclear entry of the virus. Surprisingly, HIV-1 DNA integration was increased in TREX1-overexpressing cells, suggesting a role of the exonuclease in the post-nuclear entry step of infection. Accordingly, preintegration complexes (PICs) extracted from TREX1-overexpressing cells retained higher levels of DNA integration activity. TREX1 depletion resulted in reduced levels of proviral integration, and PICs formed in TREX1-depleted cells retained lower DNA integration activity. Addition of purified TREX1 to PICs also enhanced DNA integration activity, suggesting that TREX1 promotes HIV-1 integration by stimulating PIC activity. To understand the mechanism, we measured TREX1 exonuclease activity on substrates containing viral DNA ends. These studies revealed that TREX1 preferentially degrades the unprocessed viral DNA, but the integration-competent 3'-processed viral DNA remains resistant to degradation. Finally, we observed that TREX1 addition stimulates the activity of HIV-1 intasomes assembled with the unprocessed viral DNA but not that of intasomes containing the 3'-processed viral DNA. These biochemical analyses provide a mechanism by which TREX1 directly promotes HIV-1 integration. Collectively, our study demonstrates that HIV-1 infection upregulates TREX1 to facilitate viral DNA integration. IMPORTANCE Productive HIV-1 infection is dependent on a number of cellular factors. Therefore, a clear understanding of how the virus exploits the cellular machinery will identify new targets for inhibiting HIV-1 infection. The three prime repair exonuclease 1 (TREX1) is the most active cellular exonuclease in mammalian cells. It has been reported that TREX1 prevents accumulation of HIV-1 DNA and enables the virus to evade the host innate immune response. Here, we show that HIV-1 infection results in the upregulation, perinuclear accumulation, and nuclear localization of TREX1. We also provide evidence that TREX1 promotes HIV-1 integration by preferentially degrading viral DNAs that are incompatible with chromosomal insertion. These observations identify a novel role of TREX1 in a post-nuclear entry step of HIV-1 infection.


Asunto(s)
ADN Viral/metabolismo , Exodesoxirribonucleasas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Inmunidad Innata/inmunología , Fosfoproteínas/metabolismo , Integración Viral , Replicación Viral , Núcleo Celular , ADN Viral/genética , Exodesoxirribonucleasas/genética , Células HEK293 , Infecciones por VIH/genética , Células HeLa , Humanos , Fosfoproteínas/genética
7.
Cell Mol Life Sci ; 79(1): 5, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936021

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS: Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS: We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.


Asunto(s)
Quimiotaxis , Cocaína/farmacología , Vesículas Extracelulares/metabolismo , Infecciones por VIH/genética , MicroARNs/metabolismo , Monocitos/metabolismo , Proteoma/metabolismo , Semen/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Comorbilidad , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Persona de Mediana Edad , Adulto Joven
8.
Mol Cell Proteomics ; 19(1): 78-100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676584

RESUMEN

Blood and semen are important body-fluids that carry exosomes for bioinformation transmission. Therefore, characterization of their proteomes is necessary for understanding body-fluid-specific physiologic and pathophysiologic functions. Using systematic multifactorial proteomic profiling, we characterized the proteomes of exosomes and exosome-free fractions from autologous blood and semen from three HIV-uninfected and three HIV-infected participants (total of 24 samples). We identified exosome-based protein signatures specific to blood and semen along with HIV-induced tissue-dependent proteomic perturbations. We validated our findings with samples from 16 additional donors and showed that unlike blood exosomes (BE), semen exosomes (SE) are enriched in clusterin. SE but not BE promote Protein·Nucleic acid binding and increase cell adhesion irrespective of HIV infection. This is the first comparative study of the proteome of autologous BE and SE. The proteins identified may be developed as biomarkers applicable to different fields of medicine, including reproduction and infectious diseases.


Asunto(s)
Sangre/metabolismo , Exosomas/metabolismo , Infecciones por VIH/metabolismo , VIH-1/genética , Proteoma , Proteómica/métodos , Semen/metabolismo , Adulto , Biomarcadores/metabolismo , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , ARN Viral/genética , Adulto Joven
9.
J Biol Chem ; 295(15): 5081-5094, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32152226

RESUMEN

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3'UTR of CPSF6 contains a miR-125b-binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3'UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3'UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3'UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3'UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.


Asunto(s)
Regiones no Traducidas 3'/genética , Cápside/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , MicroARNs/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Sitios de Unión , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Humanos , MicroARNs/metabolismo , Mutación , Integración Viral , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
10.
Amino Acids ; 53(12): 1903-1915, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34417893

RESUMEN

Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)-a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cocaína/efectos adversos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Prolina/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo
11.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567984

RESUMEN

The HIV-1 capsid protein (CA) facilitates reverse transcription and nuclear entry of the virus. However, CA's role in post-nuclear entry steps remains speculative. We describe a direct link between CA and integration by employing the capsid inhibitor PF74 as a probe coupled with the biochemical analysis of HIV-1 preintegration complexes (PICs) isolated from acutely infected cells. At a low micromolar concentration, PF74 potently inhibited HIV-1 infection without affecting reverse transcription. Surprisingly, PF74 markedly reduced proviral integration owing to inhibition of nuclear entry and/or integration. However, a 2-fold reduction in nuclear entry by PF74 did not quantitatively correlate with the level of antiviral activity. Titration of PF74 against the integrase inhibitor raltegravir showed an additive antiviral effect that is dependent on a block at the post-nuclear entry step. PF74's inhibitory effect was not due to the formation of defective viral DNA ends or a delay in integration, suggesting that the compound inhibits PIC-associated integration activity. Unexpectedly, PICs recovered from cells infected in the presence of PF74 exhibited elevated integration activity. PF74's effect on PIC activity is CA specific since the compound did not increase the integration activity of PICs of a PF74-resistant HIV-1 CA mutant. Sucrose gradient-based fractionation studies revealed that PICs assembled in the presence of PF74 contained lower levels of CA, suggesting a negative association between CA and PIC-associated integration activity. Finally, the addition of a CA-specific antibody or PF74 inhibited PIC-associated integration activity. Collectively, our results demonstrate that PF74's targeting of PIC-associated CA results in impaired HIV-1 integration.IMPORTANCE Antiretroviral therapy (ART) that uses various combinations of small molecule inhibitors has been highly effective in controlling HIV. However, the drugs used in the ART regimen are expensive, cause side effects, and face viral resistance. The HIV-1 CA plays critical roles in the virus life cycle and is an attractive therapeutic target. While currently there is no CA-based therapy, highly potent CA-specific inhibitors are being developed as a new class of antivirals. Efforts to develop a CA-targeted therapy can be aided through a clear understanding of the role of CA in HIV-1 infection. CA is well established to coordinate reverse transcription and nuclear entry of the virus. However, the role of CA in post-nuclear entry steps of HIV-1 infection is poorly understood. We show that a CA-specific drug PF74 inhibits HIV-1 integration revealing a novel role of this multifunctional viral protein in a post-nuclear entry step of HIV-1 infection.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Indoles/farmacología , Fenilalanina/análogos & derivados , Fármacos Anti-VIH , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Línea Celular , ADN Viral/genética , Células HEK293 , Seropositividad para VIH/genética , VIH-1/genética , Humanos , Fenilalanina/farmacología , Transcripción Reversa/genética , Integración Viral/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
12.
J Biol Chem ; 290(42): 25439-51, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26330555

RESUMEN

Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor "dehydroproline" decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy.


Asunto(s)
Autofagia/fisiología , Proteína gp120 de Envoltorio del VIH/fisiología , Neuronas/fisiología , Prolina Oxidasa/metabolismo , Línea Celular Tumoral , VIH-1 , Humanos , Mitocondrias/enzimología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
13.
Am J Pathol ; 184(1): 92-100, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24434277

RESUMEN

Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 µmol/L. However, at concentrations >100 µmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis.


Asunto(s)
Adrenérgicos/administración & dosificación , Linfocitos T CD4-Positivos/virología , Regulación de la Expresión Génica , VIH-1/efectos de los fármacos , Metanfetamina/administración & dosificación , MicroARNs/genética , Replicación Viral/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , VIH-1/fisiología , Humanos , MicroARNs/biosíntesis , ARN Mensajero/biosíntesis , ARN Mensajero/efectos de los fármacos
14.
Am J Pathol ; 184(4): 927-936, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24486327

RESUMEN

Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1-associated CD4(+) T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4(+) T cells from HIV-1-negative and HIV-1-positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4(+) T cells with cocaine (up to 100 µmol/L concentrations) did not induce apoptosis, but 200 to 1000 µmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4(+) T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4(+) T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4(+) T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1-infected drug abusers.


Asunto(s)
Apoptosis/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Trastornos Relacionados con Cocaína/complicaciones , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Infecciones por VIH/complicaciones , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Separación Celular , Trastornos Relacionados con Cocaína/inmunología , Trastornos Relacionados con Cocaína/patología , Progresión de la Enfermedad , Citometría de Flujo , Infecciones por VIH/inmunología , Infecciones por VIH/patología , VIH-1 , Humanos , Virión/efectos de los fármacos
15.
Tetrahedron Lett ; 56(17): 2247-2250, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26661734

RESUMEN

Dinucleoside phosphorochloridite were synthesized from phosphorus trichloride and three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), and 2',3'-dideoxy-3'-thiacytidine (3TC), in a multistep synthesis. Polymer-bound N-Boc p-acetoxybenzyl 5'-O-2'-deoxythymidine was reacted with dinucleoside phosphorochloridite in the presence of 2,6-lutidine, followed by the reaction with dodecyl alcohol and 5-(ethylthio)-1H-tetrazole, oxidation with tert-butyl hydroperoxide, and acidic cleavage, respectively, to afford the ß-triphosphotriester derivatives containing three different nucleosides.

16.
mBio ; 15(1): e0021222, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38085100

RESUMEN

IMPORTANCE: HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , VIH-1/genética , VIH-1/metabolismo , Seropositividad para VIH/metabolismo , Replicación Viral/genética , Integración Viral
17.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562877

RESUMEN

HIV-1 integration into the human genome is dependent on 3'-processing of the reverse transcribed viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower than the unprocessed HIV-1 DNA by TREX1. The efficiency of degradation (kcat/KM) of the 3'-processed DNA was also significantly lower than the unprocessed DNA. Furthermore, the binding affinity (Kd) of TREX1 was markedly lower to the 3'-processed DNA compared to the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the biochemical mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.

18.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948800

RESUMEN

Cyclophilin A (CypA) promotes HIV-1 infection by facilitating reverse transcription, nuclear entry and by countering the antiviral activity of TRIM5α. These multifunctional roles of CypA are driven by its binding to the viral capsid. Interestingly, recent studies suggest that the HIV-1 capsid lattice enters the nucleus of an infected cell and uncoats just before integration. Therefore, we tested whether CypA-capsid interaction regulates post-nuclear entry steps of infection, particularly integration. First, we challenged CypA-expressing (CypA +/+ ) and CypA-depleted (CypA -/- ) cells with HIV-1 particles and quantified the resulting levels of provirus. Surprisingly, CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. Additionally, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited HIV-1 integration in CypA +/+ cells but not in CypA -/- cells. Accordingly, HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at integration in CypA +/+ cells but not in CypA -/- cells. Then, to understand the mechanism, we assessed the integration activity of HIV-1 preintegration complexes (PICs) extracted from infected cells. The PICs from CypA -/- cells had lower activity in vitro compared to those from CypA +/+ cells. PICs from cells depleted for CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC activity is independent of TRIM5α. Finally, addition of CypA protein significantly stimulated the integration activity of PICs extracted from both CypA +/+ and CypA -/- cells. Collectively, these results suggest that CypA promotes HIV-1 integration, a previously unknown role of this host factor. Importance: HIV-1 capsid interaction with host cellular factors is essential for establishing a productive infection. However, the molecular details of such virus-host interactions are not fully understood. Cyclophilin A (CypA) is the first host protein identified to specifically bind to the HIV-1 capsid. Now it is established that CypA promotes reverse transcription and nuclear entry steps of HIV-1 infection. In this report, we show that CypA promotes HIV-1 integration by binding to the viral capsid. Specifically, our results demonstrate that CypA promotes HIV-1 integration by stimulating the activity of the viral preintegration complex and identifies a novel role of CypA during HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.

19.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915644

RESUMEN

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.

20.
J Acquir Immune Defic Syndr ; 94(2S): S42-S46, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707847

RESUMEN

BACKGROUND: The Southern region of the United States has the highest HIV incidence, and new infections disproportionately affect Black Americans. The Tennessee Center for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI) program supports the training of individuals from groups underrepresented in medicine and science in multiple areas of research to increase the pool of HIV-focused investigators at early educational and career stages. SETTING: The Tennessee CFAR is a partnership between Vanderbilt University Medical Center, Meharry Medical College (one of the oldest historically Black medical colleges), Tennessee Department of Health, and Nashville Community AIDS Resources, Education and Services (a sophisticated community service organization, which emphasizes research training responsive to regional and national priorities). METHODS: The Tennessee CFAR CDEIPI program leverages existing Vanderbilt University Medical Center and Meharry Medical College structured biomedical training programs for high school and undergraduate students to provide an intensive, mentored, HIV research experience augmented by CFAR resources situating this training within the broader history, scientific breadth, and societal and political aspects of the HIV epidemic. RESULTS: The first year of the Tennessee CFAR CDEIPI program trained 3 high school and 3 undergraduate students from underrepresented in medicine and science backgrounds in basic, clinical/translational, and community-focused research projects with a diverse group of 9 mentors. All students completed the program, and evaluations yielded positive feedback regarding mentoring quality and effectiveness, and continued interest in HIV-related research. CONCLUSIONS: The Tennessee CFAR CDEIPI program will continue to build upon experience from the first year to further contribute to national efforts to increase diversity in HIV-related research.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Tennessee/epidemiología , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Instituciones Académicas , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA