Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 102(12): 5358-5367, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35318666

RESUMEN

BACKGROUND: Soybean is believed to have good nutraceutical potential which is important for human health. Yellow soybean (YS) is generally used for the production of soymilk and other products, while black soybean (BS) is less explored. During the production of soymilk, residue, called okara is generated which is reported to have a good amount of nutrient content. Studies are generally performed with YS while BS is less explored. The present work is a comparison of the nutraceutical potential of BS and YS and their okara, mainly in terms of proximate, minerals, antinutrients, and isoflavone content and bioactivity of all types of samples in terms of antioxidant and antimicrobial activity. RESULTS: Compared to raw soybean, protein content decreased significantly in both types of okara. Phytochemicals like ascorbic acid, catechin, quercetin, and gallic acid were significantly (P < 0.05) high in BS residue in comparison to respective raw soybean. Among isoflavones, daidzin and genistin were found significantly varying among all the samples, and glycitin and glycitein were not present in YS. CONCLUSION: The nutraceutical potential and antimicrobial activity were comparative for both the raw beans and their okara, while the phytochemical contents and antioxidant activity were higher in the case of BS and its okara. © 2022 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Isoflavonas , Leche de Soja , Antiinfecciosos/análisis , Antioxidantes/análisis , Humanos , Isoflavonas/análisis , Minerales , Leche de Soja/química , Glycine max/química
2.
Nat Prod Res ; : 1-10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586924

RESUMEN

In this study, different parts (leaf, bark, and fruit) of Pittosporum eriocarpum were investigated to explore its chemical composition and biological activities. The GC-MS analysis confirmed the presence of fifty-seven, eighty-one, and forty-six compounds in leaf, fruit, and bark extract, respectively. The important identified bioactive compounds include 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid (quinic acid), falcarinol, tetradecanoic acid, and isopropyl myristate. Further, four polyphenolic compounds namely p-coumaric, chlorogenic, ferulic acid, and catechin were also identified and quantified in different parts through HPLC-PDA analysis. Of the studied parts of P. eriocapum, leaf extract contains the highest total phenolic, flavonoid, and tannin content, and exhibited potent antioxidant activity in ABTS assay. P. eriocarpum extracts also exhibited strong antimicrobial activity against gram-negative bacteria and showed considerable high protection against free radical-mediated DNA damage. To the best of our knowledge, this is the first detailed study of the chemical composition and biological activities of P. eriocarpum.

3.
Braz J Microbiol ; 55(1): 557-570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265571

RESUMEN

Mountain biodiversity is under unparalleled pressure due to climate change, necessitating in-depth research on high-altitude plant's microbial associations which are crucial for plant survival under stress conditions. Realizing that high-altitude tree line species of Himalaya are completely unexplored with respect to the microbial association, the present study aimed to elucidate plant growth promoting and secondary metabolite producing potential of culturable endophytic fungi of Himalayan silver birch (Betula utilis D. Don). ITS region sequencing revealed that the fungal isolates belong to Penicillium species, Pezicula radicicola, and Paraconiothyrium archidendri. These endophytes were psychrotolerant in nature with the potential to produce extracellular lytic activities. The endophytes showed plant growth promoting (PGP) traits like phosphorus solubilization and production of siderophore, indole acetic acid (IAA), and ACC deaminase. The fungal extracts also exhibited antagonistic potential against bacterial pathogens. Furthermore, the fungal extracts were found to be a potential source of bioactive compounds including the host-specific compound-betulin. Inoculation with fungal suspension improved seed germination and biomass of soybean and maize crops under net house conditions. In vitro PGP traits of the endophytes, supported by net house experiments, indicated that fungal association may support the growth and survival of the host in extreme cold conditions.


Asunto(s)
Betula , Desarrollo de la Planta , Endófitos , Bacterias , Fósforo/metabolismo , Raíces de Plantas/microbiología , Hongos
4.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33051407

RESUMEN

Large cardamom (Amomum subulatum Roxb.) is now affected by several diseases caused by both viruses and fungi. At present, leaf blight is considered a major threat to cardamom cultivation in Sikkim. During the past two decades, cultivation of the crop in this region has dropped by almost 60%. Hence, to quantify the severity of leaf blight damage and identification of the causal organism for the disease, a survey was conducted from May to August 2017 in different large cardamom growing regions of Sikkim. During this survey, a typical symptom of leaf blight was observed on cardamom leaves in many locations. The leaves with blights were collected, surface sterilized, and inoculated on potato dextrose agar (PDA). The pathogen was isolated as pure culture, and on the basis of morphological and microscopic characteristics, the fungus was identified species of Curvularia. Molecular characterization of the fungal isolate with ITS-rDNA partial gene amplification using universal primers (ITS4 and ITS5), showed 100% similarity with Curvularia eragrostidis (family: Pleosporaceae). The fungal isolate and nucleotide sequence was deposited in National Fungal Culture Collection of India (NFCCI), Pune and NCBI with accession numbers NFCCI 4541 and MN710527, respectively. This is the first report on the occurrence of C. eragrostidis pathogen causing leaf blight of large cardamom grown in Sikkim.


Asunto(s)
Amomum/microbiología , Curvularia/patogenicidad , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Amomum/genética , Amomum/crecimiento & desarrollo , Curvularia/genética , Humanos , India , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Sikkim
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA