Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 90(3): 337-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22394394

RESUMEN

Recent increase in the interest in stem and progenitor cells may be attributed to their behavioural characteristics. A consensus has been reached that embryonic or adult stem cells have therapeutic potential. As cardiovascular health issues are still the major culprits in many developed countries, stem and progenitor cell driven approaches may give the clinicians a new arsenal to tackle many significant health issues. However, stem and progenitor cell mediated cardiovascular regeneration can be achieved via complex and dynamic molecular mechanisms involving a variety of cells, growth factors, cytokines, and genes. Functional contributions of transplanted cells on target organs and their survival are still critical problems waiting to be resolved. Moreover, the regeneration of contracting myocardial tissue has controversial results in human trials. Thus, moderately favourable clinical results should be interpreted carefully. Determining the behavioural programs, genetic and transcriptional control of stem cells, mechanisms that determine cell fate, and functional characteristics are the primary targets. In addition, ensuring the long-term follow-up of cells with efficient imaging techniques in human clinical studies may provide a resurgence of the initial enthusiasm, which has faded over time. Here, we provide a brief historical perspective on stem cell driven cardiac regeneration and discuss cardiac and vascular repair in the context of translational science.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Trasplante de Células Madre , Animales , Ensayos Clínicos como Asunto , Humanos , Miocitos Cardíacos/trasplante , Neovascularización Fisiológica , Regeneración
2.
J Cardiovasc Thorac Res ; 9(4): 183-190, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29391930

RESUMEN

Introduction: Inflammation has a crucial role in the progression of cardiovascular disease in diabetes. Tumour necrosis factor-α (TNF-α) as an inflammatory marker induces angiotensin II (Ang II) related hypertension pathway in diabetic patients. Gut modulation via prebiotics may ameliorate hypertension caused by inflammation. The aim of this study was to investigate the role of sodium butyrate (NaBut) and inulin supplements on inflammatory and oxidative stress parameters in type 2 diabetic patients. Methods: In this clinical trial, 60 overweight and obese diabetic patients were recruited and randomly allocated into four groups. The groups received, respectively, 600 mg/d NaBut (group A), 10 g/d inulin powder (group B), both inulin and NaBut (group C), or placebo (group D) for 45 consecutive days. Blood and stool samples were collected at baseline and after intervention. Quantitative real-time PCR analysis targeting the 16S rRNA gene of Akkermansia muciniphila was done. We assessed the TNF-α mRNA expression and the serum levels of the high sensitive C-reactive protein (hs-CRP) and malondialdehyde (MDA). Results: There was a significant increase in A. muciniphila percent change in inulin and butyrate supplemented groups (P < 0.05). Furthermore, significant decrease was seen in TNF-α mRNA expression in group A (fold change 0.88 ± 0.16, P< 0.05), group B (fold change 0.75 ± 0.18, P < 0.05) and group C (fold change 0.91 ± 0.32, P < 0.05). Also hs-CRP, MDA and diastolic blood pressure levels decreased significantly in these groups (P < 0.05). Conclusion: Intervention had significant effects on inflammatory and oxidative stress parameters and led to improvement of hypertension. However, further investigations are needed to make concise conclusions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA