Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 18(12): 1499-1505, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34824476

RESUMEN

Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genoma Bacteriano , Secuencias de Aminoácidos , Arabidopsis/genética , Sitios de Unión , Biotina/química , Mapeo Cromosómico , ADN/química , Código de Barras del ADN Taxonómico , Bases de Datos Genéticas , Escherichia coli/metabolismo , Biblioteca de Genes , Redes Reguladoras de Genes , Fenotipo , Unión Proteica , Pseudomonas/metabolismo , Especificidad de la Especie , Factores de Transcripción/metabolismo
2.
Plant Cell Environ ; 46(3): 865-888, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479703

RESUMEN

Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35°C) or acute (40°C) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we presented a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Termotolerancia , Chlamydomonas reinhardtii/metabolismo , Termotolerancia/genética , Fotosíntesis/genética , Carbono/metabolismo
3.
PLoS Genet ; 12(2): e1005854, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26870957

RESUMEN

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.


Asunto(s)
Epigenómica , Células Procariotas/metabolismo , Secuencia Conservada , Metilación de ADN/genética , Replicación del ADN/genética , Enzimas de Restricción-Modificación del ADN/clasificación , Enzimas de Restricción-Modificación del ADN/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Genoma , Metiltransferasas/metabolismo , Anotación de Secuencia Molecular , Familia de Multigenes , Motivos de Nucleótidos/genética , Filogenia , Especificidad por Sustrato
4.
Mol Ecol ; 27(23): 4808-4819, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30368956

RESUMEN

Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans.


Asunto(s)
Álcalis , Ascomicetos/clasificación , Genoma Fúngico , Lagos/microbiología , Ascomicetos/enzimología , Transferencia de Gen Horizontal , Concentración de Iones de Hidrógeno , Filogenia , Plantas
5.
mSystems ; 6(1)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594000

RESUMEN

Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi.IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.

6.
Commun Biol ; 4(1): 1302, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795375

RESUMEN

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.


Asunto(s)
Bacterias/metabolismo , Metagenoma , Microbiota/genética , Metabolismo Secundario , Microbiología del Suelo , Bacterias/genética , Metagenómica , Familia de Multigenes , Utah
7.
Nat Commun ; 12(1): 5483, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531387

RESUMEN

Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.


Asunto(s)
Variación Genética , Microalgas/genética , Microbiota/genética , Fitoplancton/genética , Transcriptoma/genética , Regiones Antárticas , Regiones Árticas , Biodiversidad , Ciclo del Carbono , Cambio Climático , Ontología de Genes , Geografía , Calentamiento Global , Microalgas/clasificación , Microalgas/crecimiento & desarrollo , Océanos y Mares , Fitoplancton/clasificación , Fitoplancton/crecimiento & desarrollo , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA