Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174682, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002583

RESUMEN

The Tibetan Plateau (TP) has the world's largest distribution of high-alpine and saline (generally hardwater) lakes, which are expected to affect regional carbon cycling profoundly. However, the variability, and especially underlying factors controlling CO2 dynamics, across widespread hardwater lakes is poorly understood on the TP. Here, we present year-round records of surface water pCO2 from a representative hardwater lake (Nam Co) on the TP, and analyze relationships between ambient variables and pCO2 during open water (i.e., ice-free) and ice-covered months. Surface pCO2 (233.3 µatm on average) was a little oversaturated to atmosphere (219 µatm on average) during the open water season. As a CO2 source, Nam Co emitted 8.73 ± 1.06 Gg C annually, but this flux only accounted for 0.53 ± 0.06 ‰ of its total dissolved inorganic carbon pool (1.64 × 1013 g C). Regression results indicate that, during open water months, both seasonal and diurnal varying patterns of surface pCO2 were influenced predominantly by water temperature, in a quasi-marine mode, by controlling gas solubility and dissolved carbonate equilibria. Therefore, CO2 evasion was elevated during summer months, despite the lake being autotrophic (i.e., CO2 consumption via photosynthesis). By contrast, during ice-covered months the surface pCO2 was strongly related to under-ice thermodynamics, and declined nonlinear with increased inversed stratification. In the hypolimnion, as a result of extremely weak metabolism (as indicated by low dissolved oxygen depletion rates) and a combined high carbonate buffering effect, accumulation of CO2 was negligible, leading to an absence of peak effluxes of CO2 during turnover periods, compared to eutrophic freshwater lakes. We argue that, under future global warming scenarios, consideration of the impact of gradually warming lake water on thermodynamics and dissolved carbonate equilibria are vital in order to understand the future CO2 dynamics of these widespread high-altitude oligotrophic-hardwater lakes situated across the TP.

2.
R Soc Open Sci ; 11(8): 230930, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39169961

RESUMEN

Although it is well known that humans substantially altered the Malagasy ecosystems, the timing of the human arrival as well as the extension of their environmental impact is yet not well understood. This research aims to study the influence of early human impact and climate change on rainforests and wildlife in northern Madagascar during the past millennia. Results obtained from the lake sediment in a montane environment showed significant changes in vegetation within the lake catchment associated with a major drought that started approximately 1100 years ago. Human impact, revealed by fires, began at roughly the same time and occurred outside the lake catchment. Although this does not dismiss the impacts that humans had at a regional scale, this result demonstrates that the late Holocene natural drought also significantly impacted the ecosystems independently of anthropogenic activities. At a regional scale, a review of species demographic history revealed a substantial number of population bottlenecks during the last millennia, probably resulting from this combination of human-related impact and natural climate changes. This research highlights the importance of a multi-site and multi-proxy comparison for deciphering the nature and succession of environmental changes.

3.
Naturwissenschaften ; 100(1): 51-67, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23224070

RESUMEN

The Caribbean is highly vulnerable to coastal hazards. Based on their short recurrence intervals over the intra-American seas, high-category tropical cyclones and their associated effects of elevated storm surge, heavy wave impacts, mudslides and floods represent the most serious threat. Given the abundance of historical accounts and trigger mechanisms (strike-slip motion and oblique collision at the northern and southern Caribbean plate boundaries, submarine and coastal landslides, volcanism), tsunamis must be considered as well. This paper presents interdisciplinary multi-proxy investigations of sediment cores (grain size distribution, carbonate content, loss-on-ignition, magnetic susceptibility, microfauna, macrofauna) from Washington-Slagbaai National Park, NW Bonaire (Leeward Antilles). No historical tsunami is recorded for this island. However, an allochthonous marine layer found in all cores at Boka Bartol reveals several sedimentary criteria typically linked with tsunami deposits. Calibrated (14)C data from these cores point to a palaeotsunami with a maximum age of 3,300 years. Alternative explanations for the creation of this layer, such as inland flooding during tropical cyclones, cannot entirely be ruled out, though in recent times even the strongest of these events on Bonaire did not deposit significant amounts of sediment onshore. The setting of Boka Bartol changed from an open mangrove-fringed embayment into a poly- to hyperhaline lagoon due to the establishment or closure of a barrier of coral rubble during or subsequent to the inferred event. The timing of the event is supported by further sedimentary evidence from other lagoonal and alluvial archives on Bonaire.


Asunto(s)
Ecosistema , Sedimentos Geológicos/análisis , Tsunamis , Animales , Radioisótopos de Carbono/análisis , Invertebrados/ultraestructura , Microscopía Electrónica de Rastreo , Indias Occidentales
4.
Commun Biol ; 4(1): 1084, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526636

RESUMEN

Quaternary climatic changes have been invoked as important drivers of species diversification worldwide. However, the impact of such changes on vegetation and animal population dynamics in tropical regions remains debated. To overcome this uncertainty, we integrated high-resolution paleoenvironmental reconstructions from a sedimentary record covering the past 25,000 years with demographic inferences of a forest-dwelling primate species (Microcebus arnholdi), in northern Madagascar. Result comparisons suggest that climate changes through the African Humid Period (15.2 - 5.5 kyr) strongly affected the demographic dynamics of M. arnholdi. We further inferred a population decline in the last millennium which was likely shaped by the combination of climatic and anthropogenic impacts. Our findings demonstrate that population fluctuations in Malagasy wildlife were substantial prior to a significant human impact. This provides a critical knowledge of climatically driven, environmental and ecological changes in the past, which is essential to better understand the dynamics and resilience of current biodiversity.


Asunto(s)
Cheirogaleidae/fisiología , Ecosistema , Animales , Madagascar , Dinámica Poblacional
5.
Sci Rep ; 5: 13318, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26294226

RESUMEN

The Tibetan Plateau (TP) is primarily influenced by the northern hemispheric middle latitude Westerlies and the Indian summer monsoon (ISM). The extent, long-distance effects and potential long-term changes of these two atmospheric circulations are not yet fully understood. Here, we analyse modern airborne pollen in a transition zone of seasonally alternating dominance of the Westerlies and the ISM to develop a pollen discrimination index (PDI) that allows us to distinguish between the intensities of the two circulation systems. This index is applied to interpret a continuous lacustrine sedimentary record from Lake Nam Co covering the past 24 cal kyr BP to investigate long-term variations in the atmospheric circulation systems. Climatic variations on the central TP widely correspond to those of the North Atlantic (NA) realm, but are controlled through different mechanisms resulting from the changing climatic conditions since the Last Glacial Maximum (LGM). During the LGM, until 16.5 cal kyr BP, the TP was dominated by the Westerlies. After 16.5 cal kyr BP, the climatic conditions were mainly controlled by the ISM. From 11.6 to 9 cal kyr BP, the TP was exposed to enhanced solar radiation at the low latitudes, resulting in greater water availability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA