Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 40(22): e108966, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34618370

RESUMEN

Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.


Asunto(s)
Infecciones por Alphavirus/virología , Ganglios Linfáticos/citología , Receptores Inmunológicos/metabolismo , Viremia/patología , Alphavirus/patogenicidad , Animales , Fiebre Chikungunya/genética , Fiebre Chikungunya/virología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Macrófagos del Hígado/virología , Ganglios Linfáticos/virología , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , ARN Viral/metabolismo , Receptores Inmunológicos/genética , Análisis de la Célula Individual , Viremia/virología
2.
J Biol Chem ; 298(7): 102130, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714768

RESUMEN

The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana , Estrés Oxidativo , Salmonella , Activación Transcripcional , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo , Salmonella/genética , Salmonella/metabolismo , Activación Transcripcional/fisiología
3.
J Virol ; 96(9): e0006422, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35416719

RESUMEN

Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Proteínas del Envoltorio Viral , Vacunas Virales , Animales , Anticuerpos Antivirales , Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Virus Chikungunya/fisiología , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Noqueados , Fenilalanina/química , Dominios Proteicos , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/química , Vacunas Virales/inmunología , Replicación Viral
4.
Curr Top Microbiol Immunol ; 435: 55-80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30656438

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has caused both small- and large-scale epidemics of incapacitating musculoskeletal disease across the globe. A substantial proportion of infected individuals experience debilitating arthralgia and/or arthritis that can persist in relapsing or continuous forms for months to years, an occurrence that appears independent of viral strain and outbreak location. Due to the lack of CHIKV-specific vaccine or therapeutics, treatment of chronic CHIKV disease is limited to supportive care. Although the epidemiologic and molecular mechanisms that dictate resolution or chronicity of CHIKV disease remain unclear, several risk factors and immunological responses have been implicated in the development of chronic CHIKV disease. Mounting evidence from animal models and limited case studies indicates that chronic disease is likely a result of induced autoimmunity and/or viral persistence in joint-associated tissue. Due to the global spread and explosive, often unpredictable nature of CHIKV epidemics, concerted efforts to obtain a more precise understanding of the development and maintenance of chronic CHIKV disease must be at the forefront of investigative endeavors.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Brotes de Enfermedades , Humanos
5.
J Immunol ; 206(11): 2503-2507, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33972373

RESUMEN

The prior existence of human ACE2 protein-expressing mice used to study SARS-CoV and the rapid development of mouse-adapted virus strains have allowed the study of SARS-CoV-2 in mice, even as we are still learning about its natural pathology in humans. With myriad genetically altered strains on the C57BL/6 background and the abundance of immunological reagents available to interrogate its immune responses, the C57BL/6 mice may provide useful insight into the immunology of SARS-CoV-2 infection and vaccination. To conduct more detailed studies on their T cell responses to vaccines and infection, the epitopes eliciting those responses must be characterized in further detail. In this study, we mapped CD8 T cell epitopes within the receptor binding domain of the SARS-CoV-2 spike protein in C57BL/6 mice. Our study identified five major CD8 T cell epitopes in immunized C57BL/6 mice, including one, VVLSFELL, presented by H-2Kb and common between SARS-CoV and SARS-CoV-2.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Ratones , Vacunación
6.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33361425

RESUMEN

Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1-/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1-/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs-/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs-/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs-/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs-/- mice infected with WT virus, and treatment of Mavs-/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs-/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs-/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Infecciones por Alphavirus/inmunología , Antivirales/metabolismo , Células Dendríticas/inmunología , Interferón Tipo I/metabolismo , Virus del Río Ross/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infecciones por Alphavirus/virología , Animales , Células Dendríticas/metabolismo , Inmunidad Innata , Ratones , Mutación , Virus del Río Ross/genética , Transducción de Señal , Carga Viral , Proteínas no Estructurales Virales/genética , Virulencia/genética
7.
J Immunol ; 205(8): 2188-2206, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32948682

RESUMEN

Pathogen-specific memory T cells (TM) contribute to enhanced immune protection under conditions of reinfection, and their effective recruitment into a recall response relies, in part, on cues imparted by chemokines that coordinate their spatiotemporal positioning. An integrated perspective, however, needs to consider TM as a potentially relevant chemokine source themselves. In this study, we employed a comprehensive transcriptional/translational profiling strategy to delineate the identities, expression patterns, and dynamic regulation of chemokines produced by murine pathogen-specific TM CD8+TM, and to a lesser extent CD4+TM, are a prodigious source for six select chemokines (CCL1/3/4/5, CCL9/10, and XCL1) that collectively constitute a prominent and largely invariant signature across acute and chronic infections. Notably, constitutive CCL5 expression by CD8+TM serves as a unique functional imprint of prior antigenic experience; induced CCL1 production identifies highly polyfunctional CD8+ and CD4+TM subsets; long-term CD8+TM maintenance is associated with a pronounced increase of XCL1 production capacity; chemokines dominate the earliest stages of the CD8+TM recall response because of expeditious synthesis/secretion kinetics (CCL3/4/5) and low activation thresholds (CCL1/3/4/5/XCL1); and TM chemokine profiles modulated by persisting viral Ags exhibit both discrete functional deficits and a notable surplus. Nevertheless, recall responses and partial virus control in chronic infection appear little affected by the absence of major TM chemokines. Although specific contributions of TM-derived chemokines to enhanced immune protection therefore remain to be elucidated in other experimental scenarios, the ready visualization of TM chemokine-expression patterns permits a detailed stratification of TM functionalities that may be correlated with differentiation status, protective capacities, and potential fates.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocinas/inmunología , Memoria Inmunológica , Infecciones/inmunología , Enfermedad Aguda , Animales , Quimiocinas/genética , Enfermedad Crónica , Infecciones/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
8.
J Immunol ; 205(8): 2169-2187, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32948687

RESUMEN

The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocinas/inmunología , Infecciones/inmunología , Animales , Quimiocinas/genética , Infecciones/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
9.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32102875

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes explosive epidemics of a febrile illness characterized by debilitating arthralgia and arthritis that can endure for months to years following infection. In mouse models, CHIKV persists in joint tissues for weeks to months and is associated with chronic synovitis. Using a recombinant CHIKV strain encoding a CD8+ T cell receptor epitope from ovalbumin, as well as a viral peptide-specific major histocompatibility complex class I tetramer, we interrogated CD8+ T cell responses during CHIKV infection. Epitope-specific CD8+ T cells, which were reduced in Batf3-/- and Wdfy4-/- mice with known defects in antigen cross-presentation, accumulated in joint tissue and the spleen. Antigen-specific ex vivo restimulation assays and in vivo killing assays demonstrated that CD8+ T cells produce cytokine and have cytolytic activity. Despite the induction of a virus-specific CD8+ T cell response, the CHIKV burden in joint-associated tissues and the spleen were equivalent in wild-type (WT) and CD8α-/- mice during both the acute and the chronic phases of infection. In comparison, CD8+ T cells were essential for the control of acute and chronic lymphocytic choriomeningitis virus infection in the joint and spleen. Moreover, adoptive transfer of virus-specific effector CD8+ T cells or immunization with a vaccine that induces virus-specific effector CD8+ T cells prior to infection enhanced the clearance of CHIKV infection in the spleen but had a minimal impact on CHIKV infection in the joint. Collectively, these data suggest that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading CD8+ T cell immunity.IMPORTANCE CHIKV is a reemerging mosquito-transmitted virus that in the last decade has spread into Europe, Asia, the Pacific Region, and the Americas. Joint pain, swelling, and stiffness can endure for months to years after CHIKV infection, and epidemics have a severe economic impact. Elucidating the mechanisms by which CHIKV subverts antiviral immunity to establish and maintain a persistent infection may lead to the development of new therapeutic strategies against chronic CHIKV disease. In this study, we found that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading antiviral CD8+ T cell immunity. Thus, immunomodulatory therapies that improve CD8+ T cell immune surveillance and clearance of CHIKV infection could be a strategy for mitigating chronic CHIKV disease.


Asunto(s)
Fiebre Chikungunya/inmunología , Virus Chikungunya/metabolismo , Articulaciones/virología , Inmunidad Adaptativa/inmunología , Traslado Adoptivo/métodos , Animales , Anticuerpos Antivirales/inmunología , Antivirales/uso terapéutico , Artritis/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Fiebre Chikungunya/metabolismo , Virus Chikungunya/patogenicidad , Virus Chikungunya/fisiología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Inmunización , Articulaciones/inmunología , Lectinas Tipo C , Masculino , Ratones , Receptores Mitogénicos
10.
PLoS Pathog ; 15(11): e1008144, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697793

RESUMEN

The determinants of protective CD8+ memory T cell (CD8+TM) immunity remain incompletely defined and may in fact constitute an evolving agency as aging CD8+TM progressively acquire enhanced rather than impaired recall capacities. Here, we show that old as compared to young antiviral CD8+TM more effectively harness disparate molecular processes (cytokine signaling, trafficking, effector functions, and co-stimulation/inhibition) that in concert confer greater secondary reactivity. The relative reliance on these pathways is contingent on the nature of the secondary challenge (greater for chronic than acute viral infections) and over time, aging CD8+TM re-establish a dependence on the same accessory signals required for effective priming of naïve CD8+T cells in the first place. Thus, our findings reveal a temporal regulation of complementary recall response determinants that is consistent with the recently proposed "rebound model" according to which aging CD8+TM properties are gradually aligned with those of naïve CD8+T cells; our identification of a broadly diversified collection of immunomodulatory targets may further provide a foundation for the potential therapeutic "tuning" of CD8+TM immunity.


Asunto(s)
Envejecimiento/inmunología , Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Memoria Inmunológica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Recuerdo Mental/fisiología , Animales , Infecciones por Arenaviridae/virología , Citocinas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
J Immunol ; 202(2): 460-475, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552164

RESUMEN

Aging of established antiviral T cell memory can foster a series of progressive adaptations that paradoxically improve rather than compromise protective CD8+ T cell immunity. We now provide evidence that this gradual evolution, the pace of which is contingent on the precise context of the primary response, also impinges on the molecular mechanisms that regulate CD8+ memory T cell (TM) homeostasis. Over time, CD8+ TM generated in the wake of an acute infection with the natural murine pathogen lymphocytic choriomeningitis virus become more resistant to apoptosis and acquire enhanced cytokine responsiveness without adjusting their homeostatic proliferation rates; concurrent metabolic adaptations promote increased CD8+ TM quiescence and fitness but also impart the reacquisition of a partial effector-like metabolic profile; and a gradual redistribution of aging CD8+ TM from blood and nonlymphoid tissues to lymphatic organs results in CD8+ TM accumulations in bone marrow, splenic white pulp, and, particularly, lymph nodes. Altogether, these data demonstrate how temporal alterations of fundamental homeostatic determinants converge to render aged CD8+ TM poised for greater recall responses.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD8-positivos/fisiología , Memoria Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Animales , Antígenos Virales/inmunología , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética
12.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578287

RESUMEN

CD137, a member of the tumor necrosis factor receptor superfamily of cell surface proteins, acts as a costimulatory receptor on T cells, natural killer cells, B cell subsets, and some dendritic cells. Agonistic anti-CD137 monoclonal antibody (MAb) therapy has been combined with other chemotherapeutic agents in human cancer trials. Based on its ability to promote tumor clearance, we hypothesized that anti-CD137 MAb might activate immune responses and resolve chronic viral infections. We evaluated anti-CD137 MAb therapy in a mouse infection model of chikungunya virus (CHIKV), an alphavirus that causes chronic polyarthritis in humans and is associated with reservoirs of CHIKV RNA that are not cleared efficiently by adaptive immune responses. Analysis of viral tropism revealed that CHIKV RNA was present preferentially in splenic B cells and follicular dendritic cells during the persistent phase of infection, and animals lacking B cells did not develop persistent CHIKV infection in lymphoid tissue. Anti-CD137 MAb treatment resulted in T cell-dependent clearance of CHIKV RNA in lymphoid tissue, although this effect was not observed in musculoskeletal tissue. The clearance of CHIKV RNA from lymphoid tissue by anti-CD137 MAb was associated with reductions in the numbers of germinal center B cells and follicular dendritic cells. Similar results were observed with anti-CD137 MAb treatment of mice infected with Mayaro virus, a related arthritogenic alphavirus. Thus, anti-CD137 MAb treatment promotes resolution of chronic alphavirus infection in lymphoid tissues by reducing the numbers of target cells for infection and persistence.IMPORTANCE Although CHIKV causes persistent infection in lymphoid and musculoskeletal tissues in multiple animals, the basis for this is poorly understood, which has hampered pharmacological efforts to promote viral clearance. Here, we evaluated the therapeutic effects on persistent CHIKV infection of an agonistic anti-CD137 MAb that can activate T cell and natural killer cell responses to clear tumors. We show that treatment with anti-CD137 MAb promotes the clearance of persistent alphavirus RNA from lymphoid but not musculoskeletal tissues. This occurs because anti-CD137 MAb-triggered T cells reduce the numbers of target germinal center B cells and follicular dendritic cells, which are the primary reservoirs for CHIKV in the spleen and lymph nodes. Our studies help to elucidate the basis for CHIKV persistence and begin to provide strategies that can clear long-term cellular reservoirs of infection.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Fiebre Chikungunya/inmunología , Virus Chikungunya/efectos de los fármacos , Tejido Linfoide/virología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Fiebre Chikungunya/virología , Modelos Animales de Enfermedad , Humanos , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Viral , Bazo/virología , Linfocitos T/inmunología , Tropismo Viral
13.
PLoS Pathog ; 13(12): e1006748, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29244871

RESUMEN

Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response.


Asunto(s)
Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Monocitos/inmunología , Monocitos/virología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Antígenos Ly/metabolismo , Virus Chikungunya/inmunología , Virus Chikungunya/patogenicidad , Toxina Diftérica/farmacología , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/inmunología , Humanos , Inflamación/virología , Factor 3 Regulador del Interferón/deficiencia , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/deficiencia , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Interferón Tipo I/biosíntesis , Interferón Tipo I/genética , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/efectos de los fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Virus del Río Ross/genética , Virus del Río Ross/inmunología , Virus del Río Ross/patogenicidad , Carga Viral , Virulencia/genética , Virulencia/inmunología
14.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560529

RESUMEN

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

15.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307020

RESUMEN

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Asunto(s)
Metionina/análogos & derivados , NADPH Oxidasas , Fagocitos , Animales , Ratones , Humanos , Anaerobiosis , Fagocitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiración
16.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328184

RESUMEN

Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.

17.
JCI Insight ; 9(4)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194268

RESUMEN

Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Células Endoteliales/metabolismo , Inmunización , Ganglios Linfáticos , Animales
18.
Res Sq ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38645169

RESUMEN

Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.

19.
J Virol ; 86(4): 1955-70, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156513

RESUMEN

The lymphocytic choriomeningitis virus (LCMV) system constitutes one of the most widely used models for the study of infectious disease and the regulation of virus-specific T cell immunity. However, with respect to the activity of costimulatory and associated regulatory pathways, LCMV-specific T cell responses have long been regarded as relatively independent and thus distinct from the regulation of T cell immunity directed against many other viral pathogens. Here, we have reevaluated the contribution of CD28-CD80/86 costimulation in the LCMV system by use of CD80/86-deficient mice, and our results demonstrate that a disruption of CD28-CD80/86 signaling compromises the magnitude, phenotype, and/or functionality of LCMV-specific CD8(+) and/or CD4(+) T cell populations in all stages of the T cell response. Notably, a profound inhibition of secondary T cell immunity in LCMV-immune CD80/86-deficient mice emerged as a composite of both defective memory T cell development and a specific requirement for CD80 but not CD86 in the recall response, while a related experimental scenario of CD28-dependent yet CD80/86-independent secondary CD8(+) T cell immunity suggests the existence of a CD28 ligand other than CD80/86. Furthermore, we provide evidence that regulatory T cells (T(REG)s), the homeostasis of which is altered in CD80/86(-/-) mice, contribute to restrained LCMV-specific CD8(+) T cell responses in the presence of CD80/86. Our observations can therefore provide a more coherent perspective on CD28-CD80/86 costimulation in antiviral T cell immunity that positions the LCMV system within a shared context of multiple defects that virus-specific T cells acquire in the absence of CD28-CD80/86 costimulation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Antígeno B7-1/genética , Antígeno B7-1/inmunología , Antígeno B7-2/genética , Antígeno B7-2/inmunología , Antígenos CD28/genética , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Femenino , Humanos , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subgrupos de Linfocitos T/virología
20.
Nat Microbiol ; 8(9): 1653-1667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591996

RESUMEN

Chikungunya virus (CHIKV) has recently emerged to cause millions of human infections worldwide. Infection can induce the formation of long intercellular extensions that project from infected cells and form stable non-continuous membrane bridges with neighbouring cells. The mechanistic role of these intercellular extensions in CHIKV infection was unclear. Here we developed a co-culture system and flow cytometry methods to quantitatively evaluate transmission of CHIKV from infected to uninfected cells in the presence of neutralizing antibody. Endocytosis and endosomal acidification were critical for virus cell-to-cell transmission, while the CHIKV receptor MXRA8 was not. By using distinct antibodies to block formation of extensions and by evaluation of transmission in HeLa cells that did not form extensions, we showed that intercellular extensions mediate CHIKV cell-to-cell transmission. In vivo, pre-treatment of mice with a neutralizing antibody blocked infection by direct virus inoculation, while adoptive transfer of infected cells produced antibody-resistant host infection. Together our data suggest a model in which the contact sites of intercellular extensions on target cells shield CHIKV from neutralizing antibodies and promote efficient intercellular virus transmission both in vitro and in vivo.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Animales , Ratones , Células HeLa , Anticuerpos Neutralizantes , Técnicas de Cocultivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA