RESUMEN
We examined antibody and memory B cell responses longitudinally for â¼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , VacunaciónRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos/metabolismo , Humanos , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-InductoresRESUMEN
Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Genes del Desarrollo , Listeria monocytogenes/patogenicidad , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Cromatina/metabolismo , Citocinas/farmacología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Memoria Inmunológica , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Listeria monocytogenes/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/trasplante , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Memoria Inmunológica , Malaria/inmunología , Plasmodium/inmunología , Transcriptoma , Traslado Adoptivo , Animales , Antimaláricos/farmacología , Biomarcadores , Cromatina/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Malaria/parasitología , Malaria/terapia , Ratones , Plasmodium/efectos de los fármacosRESUMEN
Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Infección Irruptiva , ARN Viral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , VacunaciónRESUMEN
Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , VacunaciónRESUMEN
The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Evasión Inmune/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/fisiología , Macaca mulatta , Replicación Viral , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Carga ViralRESUMEN
Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.
Asunto(s)
Alemtuzumab , Depleción Linfocítica , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Carga Viral , Animales , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Alemtuzumab/farmacología , Depleción Linfocítica/métodos , Carga Viral/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/efectos de los fármacosRESUMEN
One approach to 'functional cure' of HIV infection is to induce durable control of HIV replication after the interruption of antiretroviral therapy (ART). However, the major factors that determine the viral 'setpoint' level after treatment interruption are not well understood. Here we combine data on ART interruption following SIV infection for 124 total animals from 10 independent studies across 3 institutional cohorts to understand the dynamics and predictors of post-treatment viral control. We find that the timing of treatment initiation is an important determinant of both the peak and early setpoint viral levels after treatment interruption. During the first 3 weeks of infection, every day of delay in treatment initiation is associated with a 0.22 log10 copies/ml decrease in post-rebound peak and setpoint viral levels. However, delay in initiation of ART beyond 3 weeks of infection is associated with higher post-rebound setpoint viral levels. For animals treated beyond 3 weeks post-infection, viral load at ART initiation was the primary predictor of post-rebound setpoint viral levels. Potential alternative predictors of post-rebound setpoint viral loads including cell-associated DNA or RNA, time from treatment interruption to rebound, and pre-interruption CD8+ T cell responses were also examined in the studies where these data were available. This analysis suggests that optimal timing of treatment initiation may be an important determinant of post-treatment control of HIV.
Asunto(s)
Infecciones por VIH , Animales , Infecciones por VIH/tratamiento farmacológico , Linfocitos T CD8-positivos , ARN Viral , Carga Viral , Antirretrovirales/farmacología , Antirretrovirales/uso terapéuticoRESUMEN
HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Replicación Viral/fisiología , Linfocitos T CD8-positivos , Epítopos , Carga Viral , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacologíaRESUMEN
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Replicación Viral/fisiologíaRESUMEN
Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.
Asunto(s)
Linfocitos T CD8-positivos , Feto , Inmunidad , Diferenciación Celular , Escolaridad , Epigenómica , Feto/inmunología , Feto/microbiologíaRESUMEN
BACKGROUND & AIMS: In individuals highly exposed to HCV, reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS: Broad neutralising antibodies (nAbs) and Envelope 2 (E2)-specific memory B cell (MBC) responses were examined longitudinally in 15 individuals with varied reinfection outcomes. RESULTS: Broad nAb responses were associated with MBC recall, but not with clearance of reinfection. Strong evidence of antigen imprinting was found, and the B-cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single-cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS: MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development. IMPACT AND IMPLICATIONS: HCV continues to have a major health burden globally. Limitations in the health infrastructure for diagnosis and treatment, as well as high rates of reinfection, indicate that a vaccine that can protect against chronic HCV infection will greatly complement current efforts to eliminate HCV-related disease. With alternative approaches to testing vaccines, such as controlled human inoculation trials under consideration, we desperately need to identify the correlates of immune protection. In this study, in a small but rare cohort of high-risk injecting drug users who were reinfected multiple times, breadth of neutralisation was not associated with ultimate clearance of the reinfection event. Alternatively, characteristics of the HCV-specific B-cell response associated with B-cell proliferation were. This study indicates that humoral responses are important for protection and suggests that for genetically very diverse viruses, such as HCV, it may be beneficial to look beyond just antibodies as correlates of protection.
Asunto(s)
Hepacivirus , Reinfección , Humanos , Reinfección/inmunología , Hepacivirus/inmunología , Hepacivirus/genética , Hepatitis C/inmunología , Masculino , Femenino , Células B de Memoria/inmunología , Anticuerpos contra la Hepatitis C/sangre , Anticuerpos contra la Hepatitis C/inmunología , Linfocitos B/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Persona de Mediana EdadRESUMEN
Reformulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines with variant strains is being pursued to combat the global surge in infections. We hypothesize that this may be suboptimal due to immune imprinting from earlier vaccination or infection with the original SARS-CoV-2 strain. New strategies may be needed to improve efficacy of SARS-CoV-2 variant vaccines.
Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2RESUMEN
Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , COVID-19/inmunología , Camélidos del Nuevo Mundo , Humanos , Ratones , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacologíaRESUMEN
Several studies have shown that neutralizing antibody levels correlate with immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, results of these studies vary in terms of estimates of the level of neutralizing antibodies required for protection. By normalizing antibody titers, we found that study results converge on a consistent relationship between antibody levels and protection from COVID-19. This finding can be useful for planning future vaccine use, determining population immunity, and reducing the global effects of the COVID-19 pandemic.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevención & control , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Glicoproteína de la Espiga del CoronavirusRESUMEN
Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Formación de Anticuerpos , ChAdOx1 nCoV-19 , Vacunación , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos NeutralizantesRESUMEN
Analytical treatment interruptions (ATIs) of antiretroviral therapy (ART) play a central role in evaluating the efficacy of HIV-1 treatment strategies targeting virus that persists despite ART. However, it remains unclear if ATIs alter the rebound-competent viral reservoir (RCVR), the virus population that persists during ART and from which viral recrudescence originates after ART discontinuation. To assess the impact of ATIs on the RCVR, we used a barcode sequence tagged SIV to track individual viral lineages through a series of ATIs in Rhesus macaques. We demonstrate that transient replication of individual rebounding lineages during an ATI can lead to their enrichment in the RCVR, increasing their probability of reactivating again after treatment discontinuation. These data establish that the RCVR can be altered by uncontrolled replication during ATI.