RESUMEN
PREMISE OF THE STUDY: Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. METHODS: We examined temporal and spatial patterns in flowering and seed production in S. alterniflora at a latitudinal scale (along the U.S. Atlantic coast), regional scale (within New England), and local scale (among subhabitats within marshes) and determined the impact of flowering on growth allocation using field and greenhouse studies. KEY RESULTS: Flowering stem density did not vary along a latitudinal gradient, while at the local scale plants in the less submerged panne subhabitats produced fewer flowers and seeds than those in more frequently submerged subhabitats. We also found that a shift in biomass allocation from above to belowground was temporally related to flowering phenology. CONCLUSIONS: We expect that environmental change will affect seed production and that the phenological relationship with flowering will result in limitations to belowground production and thus affect marsh elevation gain. Salt marshes provide an excellent model system for exploring the interactions between plant ecology and ecosystem functioning, enabling better predictions of climate change impacts.
Asunto(s)
Biomasa , Cambio Climático , Poaceae/fisiología , Flores/fisiología , Reproducción , Estaciones del Año , Semillas/fisiología , Estados Unidos , HumedalesRESUMEN
Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.
Asunto(s)
Conservación de los Recursos Naturales , Estuarios , Nitrógeno/química , Suelo/química , Animales , Ciudades , New York , Poaceae/crecimiento & desarrolloRESUMEN
Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the diameters of the rhizomes in the deteriorating marsh were significantly greater than in the stable marsh. CT imaging is a rapid approach to quantify coarse roots, rhizomes, peat, and soil particle densities in coastal wetlands, but the method is unable at this time to quantify fine roots.
Asunto(s)
Raíces de Plantas , Suelo/química , Tomografía Computarizada por Rayos X , Humedales , New York , Tamaño de la Partícula , South CarolinaRESUMEN
In a whole-ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long-term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient-mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh-high marsh interface zone was significantly lower than at the sub-rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10-30 cm) and sub-rooting (40-60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub-rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient-enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes.
RESUMEN
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread, and accelerating, with vegetation loss rates over the past four decades summing to 17.3%. Seaward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r2=0.96; p=0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of Spartina alterniflora and thus negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise, and may not be stable as tidal flooding increases in the future.
RESUMEN
Three different sizes of marine microcosms were used to study the influence of two features of spatial scale on the chemical fate and ecological effects of the pesticide Kepone. Increasing the size of microcosms reduced the ratio of wall surface area to volume of contained sea water, but increased the number of benthic species due to increasing sample size. Other features of spatial scale, such as water turbulence, water turnover, etc., were held constant. Intact water-column and benthic communities from a north-temperate marine system were coupled together in 9.1-, 35.0-, and 140.O-L containers. Kepone at 20.4 nmol/L was added to these microcosm systems over a 30-d period. A 3 x 2 factorial design was used to discern the effects of size and Kepone. In the absence of Kepone the phytoplankton community exhibited excessive growth relative to the field system for all system sizes. Growth was directly related to the size of microcosms. In addition, the time required to achieve maximum algal biomass was also directly related to size. Release of a growth-stimulating compound(s) from fouling organisms settling on the microcosm walls and size-dependent increases in benthic species provided the best explanation for the observed phytoplankton dynamics. Addition of Kepone indirectly increased phytoplankton densities by reducing through toxic effects, the grazing pressure of zooplankton. Because this effect and mechanism was dependent upon the size of the system, the sensitivity of future perturbation studies may be enhanced by producing similar or related variations in system size. The concentration of Kepone in surficial sediments was also size dependent. Since the average concentrations of Kepone in all water columns were statistically equivalent, these findings were the result of sediment bioturbation coupled with preferential partitioning of Kepone from liquid to the solid, organic phase of sediments. Ecological risk assessments based upon data derived from these systems are therefore dependent upon size. Furthermore, the smaller the size, the greater the underestimate in sediment exposure and the ecological risks of Kepone.