Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 545(7653): 199-202, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28492251

RESUMEN

The Jovian moon Io hosts the most powerful persistently active volcano in the Solar System, Loki Patera. The interior of this volcanic, caldera-like feature is composed of a warm, dark floor covering 21,500 square kilometres surrounding a much cooler central 'island'. The temperature gradient seen across areas of the patera indicates a systematic resurfacing process, which has been seen to occur typically every one to three years since the 1980s. Analysis of past data has indicated that the resurfacing progressed around the patera in an anti-clockwise direction at a rate of one to two kilometres per day, and that it is caused either by episodic eruptions that emplace voluminous lava flows or by a cyclically overturning lava lake contained within the patera. However, spacecraft and telescope observations have been unable to map the emission from the entire patera floor at sufficient spatial resolution to establish the physical processes at play. Here we report temperature and lava cooling age maps of the entire patera floor at a spatial sampling of about two kilometres, derived from ground-based interferometric imaging of thermal emission from Loki Patera obtained on 8 March 2015 ut as the limb of Europa occulted Io. Our results indicate that Loki Patera is resurfaced by a multi-phase process in which two waves propagate and converge around the central island. The different velocities and start times of the waves indicate a non-uniformity in the lava gas content and/or crust bulk density across the patera.

2.
Opt Express ; 29(9): 12958-12966, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985041

RESUMEN

We report on both experiments and theory of low-terahertz frequency range (up to 400 GHz) magnetoplasmons in a gated two-dimensional electron gas at low (<4K) temperatures. The evolution of magnetoplasmon resonances was observed as a function of magnetic field at frequencies up to ∼400 GHz. Full-wave 3D simulations of the system predicted the spatial distribution of plasmon modes in the 2D channel, along with their frequency response, allowing us to distinguish those resonances caused by bulk and edge magnetoplasmons in the experiments. Our methodology is anticipated to be applicable to the low temperature (<4K) on-chip terahertz measurements of a wide range of other low-dimensional mesoscopic systems.

3.
Opt Express ; 28(4): 4374-4386, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121675

RESUMEN

The quantum cascade laser is a powerful solid-state source of terahertz-frequency radiation. However, integrating multiple photonic functions into a monolithic platform in this frequency range is non-trivial due to the scaling of photonic structures for the long terahertz wavelengths and the low frequency tuning coefficients of the quantum cascade lasers. Here, we have designed a simple terahertz-frequency photonic integrated circuit by coupling a racetrack resonator with a ridge laser in the longitudinal direction to design a notch filter. The transmission properties of this filter structure are dependent on the phase matching and losses in the coupled racetrack and results in a comb of stopband frequencies. We have optimized the comb separation by carefully selecting the cavity dimensions of the racetrack resonator to suppress longitudinal modes in the ridge laser enabling single-mode emission. The emission frequencies and output power from laser are controlled through appropriate control of drive currents to the ridge and the racetrack resonator. The emission frequency is electrically tuned over ∼81 GHz exploiting Stark shift of the gain as a function of drive current at the ridge laser, coinciding with an output power variation of ∼27% of the peak power (at a heat sink temperature of 50 K). The output power from the ridge also varied by ∼30% and the frequency was tuned by a further 10 GHz when the driving conditions at the ridge laser are invariant and the current at the racetrack resonator was varied. To our best knowledge, this is the first report of a frequency engineering, tuning and power modulation of terahertz-frequency quantum cascade lasers using a photonic integrated circuit.

4.
Opt Express ; 28(12): 17219-17231, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679934

RESUMEN

We report on the design, fabrication and characterisation of large-area photoconductive THz array structures, consisting of a thin LT-GaAs active region transferred to an insulating substrate using a wafer-scale bonding process. The electrically insulating, transparent substrate reduces the parasitic currents in the devices, allowing peak THz-fields as high as 120 kV cm-1 to be generated over a bandwidth >5 THz. These results are achieved using lower pulse energies than demanded by conventional photoconductive arrays and other popular methods of generating high-field THz radiation. Two device sizes are fully characterised and the emission properties are compared to generation by optical rectification in ZnTe. The device can be operated in an optically saturated regime in order to suppress laser noise.

5.
Opt Express ; 27(23): 33768-33778, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878438

RESUMEN

We demonstrate an electrically tunable polarizer for terahertz (THz) frequency electromagnetic waves formed from a hybrid graphene-metal metasurface. Broadband (>3 THz) polarization-dependent modulation of THz transmission is demonstrated as a function of the graphene conductivity for various wire grid geometries, each tuned by gating using an overlaid ion gel. We show a strong enhancement of modulation (up to ∼17 times) compared to graphene wire grids in the frequency range of 0.2-2.5 THz upon introduction of the metallic elements. Theoretical calculations, considering both plasmonic coupling and Drude absorption, are in good agreement with our experimental findings.

6.
Opt Express ; 27(16): 23164-23172, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510599

RESUMEN

We demonstrate a significant enhancement in the sensitivity of split ring resonator terahertz metamaterial dielectric sensors by the introduction of etched trenches into their inductive-capacitive gap area, both through finite element simulations and in experiments performed using terahertz time-domain spectroscopy. The enhanced sensitivity is demonstrated by observation of an increased frequency shift in response to overlaid dielectric material of thicknesses up to 18 µm deposited on to the sensor surface. We show that sensitivity to the dielectric is enhanced by a factor of up to ∼2.7 times by the incorporation of locally etched trenches with a depth of ∼3.4 µm, for example, and discuss the effect of the etching on the electrical properties of the sensors. Our experimental findings are in good agreement with simulations of the sensors obtained using finite element methods.

7.
Opt Lett ; 44(13): 3314-3317, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259948

RESUMEN

We report on the high detection sensitivity of a laser feedback interferometry scheme based on a terahertz frequency quantum cascade laser (QCL). We show that variations on the laser voltage induced by optical feedback to the laser can be resolved with the reinjection of powers as low as ∼-125 dB of the emitted power. Our measurements demonstrate a noise equivalent power of ∼1.4 pW/√Hz, although, after accounting for the reinjection losses, we estimate that this corresponds to only ∼1 fW/√Hz being coupled to the QCL active region.

8.
Opt Express ; 26(4): 3814-3827, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475360

RESUMEN

Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 1015 cm-3, an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.

9.
Opt Lett ; 43(24): 5933-5936, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30547973

RESUMEN

A multimode self-mixing terahertz-frequency gas absorption spectroscopy is demonstrated based on a quantum cascade laser. A double-metal device configuration is used to expand the laser's frequency tuning range, and a precision-micromachined external waveguide module is used to enhance the optical feedback. Methanol spectra are measured using two laser modes at 3.362 and 3.428 THz, simultaneously, with more than eight absorption peaks resolved over a 17 GHz bandwidth, which provide the noise-equivalent absorption sensitivity of 1.20×10-3 cm-1 Hz-1/2 and 2.08×10-3 cm-1 Hz-1/2, respectively. In contrast to all previous self-mixing spectroscopy, our multimode technique expands the sensing bandwidth and duty cycle significantly.

10.
Opt Express ; 24(3): 2174-82, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906793

RESUMEN

The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out.

11.
Opt Express ; 24(25): 28583-28593, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958502

RESUMEN

We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.

12.
Nanotechnology ; 27(39): 395301, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27559837

RESUMEN

We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces-demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable.


Asunto(s)
ADN/química , Electrodos , Oro , Nanoestructuras , Oligonucleótidos
13.
Opt Express ; 23(3): 2720-9, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836134

RESUMEN

The technique of molecular beam epitaxy has recently been used to demonstrate the growth of terahertz frequency GaAs/AlGaAs quantum cascade lasers (QCL) with Watt-level optical output powers. In this paper, we discuss the critical importance of achieving accurate layer thicknesses and alloy compositions during growth, and demonstrate that precise growth control as well as run-to-run growth reproducibility is possible. We also discuss the importance of minimizing background doping level in maximizing QCL performance. By selecting high-performance active region designs, and optimizing the injection doping level and device fabrication, we demonstrate total optical (two-facet) output powers as high as 1.56 W.

14.
Opt Express ; 23(4): 4012-20, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836440

RESUMEN

Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.

15.
Opt Lett ; 40(6): 950-3, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25768154

RESUMEN

We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme, the frequency tuning rate of a THz QCL is characterized, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantization in previously implemented fringe-counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilization schemes for THz QCLs.

16.
Opt Lett ; 40(6): 994-7, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25768165

RESUMEN

We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach, we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 µm with a power noise spectral density below -50 dB/Hz, for a sampling time of 10 ms/pixel.

17.
Analyst ; 140(3): 803-10, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25431807

RESUMEN

The development of high sensitivity biosensors, for example for clinical diagnostics, requires the identification of suitable receptor molecules which offer high stability, specificity and affinity, even when embedded into solid-state biosensor transducers. Here, we present an electrochemical biosensor employing small synthetic receptor proteins (Mw < 15 kDa) which emulate antibodies but with improved stability, sensitivity and molecular recognition properties, in particular when immobilized on a solid sensor surface. The synthetic receptor protein is a non-antibody-based protein scaffold with variable peptide regions inserted to provide the specific binding, and was designed to bind anti-myc tag antibody (Mw ∼ 150 kDa), as a proof-of-principle exemplar. Both the scaffold and the selected receptor protein were found to have high thermostability with melting temperatures of 101 °C and 85 °C, respectively. Furthermore, the secondary structures of the receptor protein were found to be very similar to that of the original native scaffold, despite the insertion of variable peptide loops that create the binding sites. A label-free electrochemical sensor was fabricated by functionalising a microfabricated gold electrode with the receptor protein. A change in the phase of the electrochemical impedance was observed when the biosensor was subjected to anti-myc tag antibodies at concentrations between 6.7 pM and 6.7 nM. These findings demonstrate that these non-antibody receptor proteins are excellent candidates for recognition molecules in label-free biosensors.


Asunto(s)
Anticuerpos/química , Biomimética , Técnicas Biosensibles/métodos , Electrodos , Proteínas/química , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Electroquímica , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
18.
Nature ; 457(7226): 174-8, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19129844

RESUMEN

Semiconductor lasers based on two-dimensional photonic crystals generally rely on an optically pumped central area, surrounded by un-pumped, and therefore absorbing, regions. This ideal configuration is lost when photonic-crystal lasers are electrically pumped, which is practically more attractive as an external laser source is not required. In this case, in order to avoid lateral spreading of the electrical current, the device active area must be physically defined by appropriate semiconductor processing. This creates an abrupt change in the complex dielectric constant at the device boundaries, especially in the case of lasers operating in the far-infrared, where the large emission wavelengths impose device thicknesses of several micrometres. Here we show that such abrupt boundary conditions can dramatically influence the operation of electrically pumped photonic-crystal lasers. By demonstrating a general technique to implement reflecting or absorbing boundaries, we produce evidence that whispering-gallery-like modes or true photonic-crystal states can be alternatively excited. We illustrate the power of this technique by fabricating photonic-crystal terahertz (THz) semiconductor lasers, where the photonic crystal is implemented via the sole patterning of the device top metallization. Single-mode laser action is obtained in the 2.55-2.88 THz range, and the emission far field exhibits a small angular divergence, thus providing a solution for the quasi-total lack of directionality typical of THz semiconductor lasers based on metal-metal waveguides.

19.
Opt Lett ; 39(13): 3962-5, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24978782

RESUMEN

Photonic-crystal lasers operating on Γ-point band-edge states of a photonic structure naturally exploit the so-called "nonradiative" modes. As the surface output coupling efficiency of these modes is low, they have relatively high Q factors, which favor lasing. We propose a new 2D photonic-crystal design that is capable of reversing this mode competition and achieving lasing on the radiative modes instead. Previously, this has only been shown in 1D structures, where the central idea is to introduce anisotropy into the system, both at unit-cell and resonator scales. By applying this concept to 2D photonic-crystal patterned terahertz frequency quantum cascade lasers, surface-emitting devices with diffraction-limited beams are demonstrated, with 17 mW peak output power.

20.
Opt Lett ; 39(9): 2629-32, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784063

RESUMEN

We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA