Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
EMBO J ; 42(6): e112094, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727301

RESUMEN

DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Unión al ADN , Estrés Oxidativo , Humanos , Adenosina Trifosfato/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Fosforilación
2.
Nucleic Acids Res ; 51(13): 6770-6783, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37309889

RESUMEN

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double-stranded breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs. Ablating phosphorylation at T4102 attenuates DNA-PKcs kinase activity and this destabilizes the interaction between DNA-PKcs and the Ku-DNA complex, resulting in decreased assembly and stabilization of the NHEJ machinery at DSBs. Phosphorylation at T4102 promotes NHEJ, radioresistance, and increases genomic stability following DSB induction. Collectively, these findings establish a key role for ATM in NHEJ-dependent repair of DSBs through positive regulation of DNA-PKcs.


Asunto(s)
Ataxia Telangiectasia , Proteína Quinasa Activada por ADN , Humanos , Proteína Quinasa Activada por ADN/genética , Reparación del ADN , Treonina/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN por Unión de Extremidades , ADN/genética
3.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37395399

RESUMEN

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas Quinasas , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo , Humanos
4.
J Biol Chem ; 299(11): 105348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838177

RESUMEN

Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Neoplasias/genética
5.
Nucleic Acids Res ; 50(10): 5635-5651, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580045

RESUMEN

Non-homologous end joining (NHEJ) is the major pathway that mediates the repair of DNA double-strand breaks (DSBs) generated by ionizing radiation (IR). Previously, the DNA helicase RECQL4 was implicated in promoting NHEJ, but its role in the pathway remains unresolved. In this study, we report that RECQL4 stabilizes the NHEJ machinery at DSBs to promote repair. Specifically, we find that RECQL4 interacts with the NHEJ core factor DNA-PKcs and the interaction is increased following IR. RECQL4 promotes DNA end bridging mediated by DNA-PKcs and Ku70/80 in vitro and the accumulation/retention of NHEJ factors at DSBs in vivo. Moreover, interaction between DNA-PKcs and the other core NHEJ proteins following IR treatment is attenuated in the absence of RECQL4. These data indicate that RECQL4 promotes the stabilization of the NHEJ factors at DSBs to support formation of the NHEJ long-range synaptic complex. In addition, we observed that the kinase activity of DNA-PKcs is required for accumulation of RECQL4 to DSBs and that DNA-PKcs phosphorylates RECQL4 at six serine/threonine residues. Blocking phosphorylation at these sites reduced the recruitment of RECQL4 to DSBs, attenuated the interaction between RECQL4 and NHEJ factors, destabilized interactions between the NHEJ machinery, and resulted in decreased NHEJ. Collectively, these data illustrate reciprocal regulation between RECQL4 and DNA-PKcs in NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosforilación , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
6.
Nucleic Acids Res ; 49(17): 9836-9850, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34428289

RESUMEN

Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.


Asunto(s)
Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas Experimentales/genética , Reparación del ADN por Recombinación , Animales , Células Cultivadas , Femenino , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Ratones , Mutación , Fosforilación , Tolerancia a Radiación
7.
Biotechnol Bioeng ; 119(3): 963-982, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953085

RESUMEN

Chinese hamster ovary (CHO) cells are the primary host for manufacturing of therapeutic proteins. However, productivity loss is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein expression. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide variants in DNA repair genes. Comparison with primary Chinese hamster cells confirmed DNA repair to be compromised in CHO. Correction of key DNA repair genes by single-nucleotide variant reversal or expression of intact complementary DNAs successfully improved DNA repair and mitigated karyotypic instability. Moreover, overexpression of intact copies of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show that correction of DNA repair genes yields improvements in genome stability in CHO, and provide new opportunities for cell line development for sustainable protein expression.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Animales , Células CHO , Cricetinae , Cricetulus , Reparación del ADN/genética , Inestabilidad Genómica/genética , Cariotipificación
8.
Nucleic Acids Res ; 48(19): 10953-10972, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045735

RESUMEN

Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1's ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA-RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Unión Proteica , Multimerización de Proteína
9.
Nucleic Acids Res ; 47(18): 9467-9479, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31396623

RESUMEN

The DNA damage response (DDR) encompasses the cellular response to DNA double-stranded breaks (DSBs), and includes recognition of the DSB, recruitment of numerous factors to the DNA damage site, initiation of signaling cascades, chromatin remodeling, cell-cycle checkpoint activation, and repair of the DSB. Key drivers of the DDR are multiple members of the phosphatidylinositol 3-kinase-related kinase family, including ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). ATM and ATR modulate multiple portions of the DDR, but DNA-PKcs is believed to primarily function in the DSB repair pathway, non-homologous end joining. Utilizing a human cell line in which the kinase domain of DNA-PKcs is inactivated, we show here that DNA-PKcs kinase activity is required for the cellular response to DSBs immediately after their induction. Specifically, DNA-PKcs kinase activity initiates phosphorylation of the chromatin factors H2AX and KAP1 following ionizing radiation exposure and drives local chromatin decondensation near the DSB site. Furthermore, loss of DNA-PKcs kinase activity results in a marked decrease in the recruitment of numerous members of the DDR machinery to DSBs. Collectively, these results provide clear evidence that DNA-PKcs activity is pivotal for the initiation of the DDR.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , ADN/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control del Ciclo Celular/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/genética , Humanos , Proteínas Nucleares/genética , Fosforilación/efectos de la radiación , Radiación Ionizante , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
10.
Nucleic Acids Res ; 44(4): 1732-45, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26712563

RESUMEN

Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.


Asunto(s)
Antígenos Nucleares/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Fase S/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Fibroblastos/metabolismo , Células HCT116 , Recombinación Homóloga , Humanos , Autoantígeno Ku , Ratones , Transducción de Señal
12.
Biochem Biophys Res Commun ; 477(2): 235-40, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27297111

RESUMEN

DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that plays an essential role in the repair of DNA double-strand breaks (DSBs) in the non-homologous end-joining (NHEJ) pathway. The DNA-PK holoenzyme consists of a catalytic subunit (DNA-PKcs) and DNA-binding subunit (Ku70/80, Ku). Ku is a molecular sensor for double-stranded DNA and once bound to DSB ends it recruits DNA-PKcs to the DSB site. Subsequently, DNA-PKcs is activated and heavily phosphorylated, with these phosphorylations modulating DNA-PKcs. Although phosphorylation of DNA-PKcs is well studied, other post-translational modifications of DNA-PKcs are not. In this study, we aimed to determine if acetylation of DNA-PKcs regulates DNA-PKcs-dependent DSB repair. We report that DNA-PKcs is acetylated in vivo and identified two putative acetylation sites, lysine residues 3241 and 3260. Mutating these sites to block potential acetylation results in increased radiosensitive, a slight decrease in DSB repair capacity as assessed by γH2AX resolution, and increased chromosomal aberrations, especially quadriradial chromosomes. Together, our results provide evidence that acetylation potentially regulates DNA-PKcs.


Asunto(s)
Daño del ADN/genética , Proteína Quinasa Activada por ADN/genética , ADN/genética , Inestabilidad Genómica/genética , Inestabilidad Genómica/efectos de la radiación , Proteínas Nucleares/genética , Tolerancia a Radiación/genética , Animales , Células CHO , Cricetulus , ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Endodesoxirribonucleasas , Proteínas de Escherichia coli , Lisina/genética , Lisina/efectos de la radiación , Proteínas Nucleares/efectos de la radiación , Dosis de Radiación , Relación Estructura-Actividad
13.
Nucleic Acids Res ; 42(1): e5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24137007

RESUMEN

A common feature of DNA repair proteins is their mobilization in response to DNA damage. The ability to visualizing and quantifying the kinetics of proteins localizing/dissociating from DNA double strand breaks (DSBs) via immunofluorescence or live cell fluorescence microscopy have been powerful tools in allowing insight into the DNA damage response, but these tools have some limitations. For example, a number of well-established DSB repair factors, in particular those required for non-homologous end joining (NHEJ), do not form discrete foci in response to DSBs induced by ionizing radiation (IR) or radiomimetic drugs, including bleomycin, in living cells. In this report, we show that time-dependent kinetics of the NHEJ factors Ku80 and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) in response to IR and bleomycin can be quantified by Number and Brightness analysis and Raster-scan Image Correlation Spectroscopy. Fluorescent-tagged Ku80 and DNA-PKcs quickly mobilized in response to IR and bleomycin treatments consistent with prior reports using laser-generated DSBs. The response was linearly dependent on IR dose, and blocking NHEJ enhanced immobilization of both Ku80 and DNA-PKcs after DNA damage. These findings support the idea of using Number and Brightness and Raster-scan Image Correlation Spectroscopy as methods to monitor kinetics of DSB repair proteins in living cells under conditions mimicking radiation and chemotherapy treatments.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/análisis , Espectrometría de Fluorescencia/métodos , Animales , Antígenos Nucleares/análisis , Antígenos Nucleares/genética , Proteínas Bacterianas/genética , Bleomicina/toxicidad , Células CHO , Cricetulus , Proteína Quinasa Activada por ADN/análisis , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Rayos gamma , Proteínas Fluorescentes Verdes/genética , Cinética , Autoantígeno Ku , Proteínas Luminiscentes/genética
14.
Nucleic Acids Res ; 42(18): 11487-501, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25223785

RESUMEN

Non-homologous end-joining (NHEJ) and homologous recombination (HR) are the two prominent pathways responsible for the repair of DNA double-strand breaks (DSBs). NHEJ is not restricted to a cell-cycle stage, whereas HR is active primarily in the S/G2 phases suggesting there are cell cycle-specific mechanisms that play a role in the choice between NHEJ and HR. Here we show NHEJ is attenuated in S phase via modulation of the autophosphorylation status of the NHEJ factor DNA-PKcs at serine 2056 by the pro-HR factor BRCA1. BRCA1 interacts with DNA-PKcs in a cell cycle-regulated manner and this interaction is mediated by the tandem BRCT domain of BRCA1, but surprisingly in a phospho-independent manner. BRCA1 attenuates DNA-PKcs autophosphorylation via directly blocking the ability of DNA-PKcs to autophosphorylate. Subsequently, blocking autophosphorylation of DNA-PKcs at the serine 2056 phosphorylation cluster promotes HR-required DNA end processing and loading of HR factors to DSBs and is a possible mechanism by which BRCA1 promotes HR.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Fase S , Proteína BRCA1/química , Línea Celular , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/química , Células HeLa , Humanos , Fosforilación , Estructura Terciaria de Proteína , Tolerancia a Radiación , Reparación del ADN por Recombinación , Fase S/genética , Serina/metabolismo
15.
J Biol Chem ; 288(10): 7037-46, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23322783

RESUMEN

DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1-2713), termed N-PKcs, and the C terminus (amino acids 2714-4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Nucleares/metabolismo , Animales , Antígenos Nucleares/química , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Western Blotting , Células CHO , Cricetinae , Cricetulus , ADN/genética , ADN/metabolismo , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Células HeLa , Humanos , Autoantígeno Ku , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Células Sf9
16.
J Exp Clin Cancer Res ; 43(1): 163, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863037

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas Serina-Treonina Quinasas , Tolerancia a Radiación , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Femenino , Ratones , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones SCID
17.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766122

RESUMEN

Background: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. Methods: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC 50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. Results: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t 1/2 , ∼8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. Conclusions: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.

18.
Nat Commun ; 15(1): 5611, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965240

RESUMEN

Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.


Asunto(s)
Sistemas CRISPR-Cas , Cromotripsis , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mitosis , Mitosis/genética , Humanos , Reordenamiento Génico , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Micronúcleos con Defecto Cromosómico
19.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190717

RESUMEN

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Microambiente Tumoral , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
20.
J Biol Chem ; 287(7): 4936-45, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22179609

RESUMEN

DNA double strand breaks (DSB) are repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Recent genetic data in yeast shows that the choice between these two pathways for the repair of DSBs is via competition between the NHEJ protein, Ku, and the HR protein, Mre11/Rad50/Xrs2 (MRX) complex. To study the interrelationship between human Ku and Mre11 or Mre11/Rad50 (MR), we established an in vitro DNA end resection system using a forked model dsDNA substrate and purified human Ku70/80, Mre11, Mre11/Rad50, and exonuclease 1 (Exo1). Our study shows that the addition of Ku70/80 blocks Exo1-mediated DNA end resection of the forked dsDNA substrate. Although human Mre11 and MR bind to the forked double strand DNA, they could not compete with Ku for DNA ends or actively mediate the displacement of Ku from the DNA end either physically or via its exonuclease or endonuclease activity. Our in vitro studies show that Ku can block DNA resection and suggest that Ku must be actively displaced for DNA end processing to occur and is more complicated than the competition model established in yeast.


Asunto(s)
Antígenos Nucleares/química , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , ADN/química , Exodesoxirribonucleasas/química , Complejos Multiproteicos/química , Ácido Anhídrido Hidrolasas , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Autoantígeno Ku , Proteína Homóloga de MRE11 , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA