Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Epilepsia ; 65(2): 456-472, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052481

RESUMEN

OBJECTIVE: There are few comparative data on the third-generation antiseizure medications (ASMs). We aimed to assess and compare the effectiveness of brivaracetam (BRV), eslicarbazepine acetate (ESL), lacosamide (LCM), and perampanel (PER) in people with epilepsy (PWE). Efficacy and tolerability were compared as secondary objectives. METHODS: This multicenter, retrospective study collected data from 22 Italian neurology/epilepsy centers. All adult PWE who started add-on treatment with one of the studied ASMs between January 2018 and October 2021 were included. Retention rate was established as effectiveness measure and described using Kaplan-Meier curves and the best fitting survival model. The responder status and the occurrence of adverse events (AEs) were used to evaluate efficacy and safety, respectively. The odds of AEs and drug efficacy were estimated by two multilevel logistic models. RESULTS: A total of 960 patients (52.92% females, median age = 43 years) met the inclusion criteria. They mainly suffered from structural epilepsy (52.29%) with monthly (46.2%) focal seizures (69.58%). Compared with LCM, all the studied ASMs had a higher dropout risk, statistically significant in the BRV levetiracetam (LEV)-naïve (hazard ratio [HR] = 1.97, 95% confidence interval [CI] = 1.17-3.29) and PER groups (HR = 1.64, 95% CI = 1.06-2.55). Women were at higher risk of discontinuing ESL (HR = 5.33, 95% CI = 1.71-16.61), as well as PER-treated patients with unknown epilepsy etiology versus those with structural etiology (HR = 1.74, 95% CI = 1.05-2.88). BRV with prior LEV therapy showed lower odds of efficacy (odds ratio [OR] = .08, 95% CI = .01-.48) versus LCM, whereas a higher efficacy was observed in women treated with BRV and LEV-naïve (OR = 10.32, 95% CI = 1.55-68.78) versus men. PER (OR = 6.93, 95% CI = 3.32-14.44) and BRV in LEV-naïve patients (OR = 6.80, 95% CI = 2.64-17.52) had a higher chance of AEs than LCM. SIGNIFICANCE: Comparative evidence from real-world studies may help clinicians to tailor treatments according to patients' demographic and clinical characteristics.


Asunto(s)
Epilepsias Parciales , Epilepsia , Nitrilos , Piridonas , Masculino , Adulto , Humanos , Femenino , Anticonvulsivantes/efectos adversos , Epilepsias Parciales/tratamiento farmacológico , Estudios Retrospectivos , Levetiracetam/uso terapéutico , Lacosamida/uso terapéutico , Epilepsia/tratamiento farmacológico , Pirrolidinonas/uso terapéutico , Resultado del Tratamiento
2.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791490

RESUMEN

Gut microbiota imbalances have a significant role in the pathogenesis of Inflammatory Bowel Disease (IBD) and Non-Alcoholic Fatty Liver Disease (NAFLD). Herein, we compared gut microbial composition in patients diagnosed with either IBD or NAFLD or a combination of both. Seventy-four participants were stratified into four groups: IBD-NAFLD, IBD-only, NAFLD-only patients, and healthy controls (CTRLs). The 16S rRNA was sequenced by Next-Generation Sequencing. Bioinformatics and statistical analysis were performed. Bacterial α-diversity showed a significant lower value when the IBD-only group was compared to the other groups and particularly against the IBD-NAFLD group. ß-diversity also showed a significant difference among groups. The higher Bacteroidetes/Firmicutes ratio was found only when comparing IBD groups and CTRLs. Comparing the IBD-only group with the IBD-NAFLD group, a decrease in differential abundance of Subdoligranulum, Parabacteroides, and Fusicatenibacter was found. Comparing the NAFLD-only with the IBD-NAFLD groups, there was a higher abundance of Alistipes, Odoribacter, Sutterella, and Lachnospira. An inverse relationship in the comparison between the IBD-only group and the other groups was shown. For the first time, the singularity of the gut microbial composition in IBD and NAFLD patients has been shown, implying a potential microbial signature mainly influenced by gut inflammation.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Metagenómica , Enfermedad del Hígado Graso no Alcohólico , ARN Ribosómico 16S , Humanos , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/genética , Microbioma Gastrointestinal/genética , Enfermedades Inflamatorias del Intestino/microbiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Metagenómica/métodos , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metagenoma
3.
Medicina (Kaunas) ; 60(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38929492

RESUMEN

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Asunto(s)
Túbulos Renales Proximales , Daño por Reperfusión , Selenoproteína P , Humanos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Biomarcadores/análisis , Línea Celular , Supervivencia Celular , Técnicas In Vitro , Túbulos Renales Proximales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Selenoproteína P/sangre , Selenoproteína P/metabolismo , Selenito de Sodio/farmacología
4.
Diabetes Obes Metab ; 25(2): 556-569, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305474

RESUMEN

Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1ß (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1ß (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1ß (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.


Asunto(s)
FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Glucagón/farmacología , Complemento C3/farmacología , Interleucina-6 , Inflamasomas/metabolismo , Hígado/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología
5.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298727

RESUMEN

Gut dysbiosis has been involved in the pathogenesis and progression of Parkinson's disease (PD), but the mechanisms through which gut microbiota (GM) exerts its influences deserve further study. Recently, we proposed a two-hit mouse model of PD in which ceftriaxone (CFX)-induced dysbiosis amplifies the neurodegenerative phenotype generated by striatal 6-hydroxydopamine (6-OHDA) injection in mice. Low GM diversity and the depletion of key gut colonizers and butyrate producers were the main signatures of GM alteration in this model. Here, we used the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) to unravel candidate pathways of cell-to-cell communication associated with dual-hit mice and potentially involved in PD progression. We focused our analysis on short-chain fatty acids (SCFAs) metabolism and quorum sensing (QS) signaling. Based on linear discriminant analysis, combined with the effect size results, we found increased functions linked to pyruvate utilization and a depletion of acetate and butyrate production in 6-OHDA+CFX mice. The specific arrangement of QS signaling as a possible result of the disrupted GM structure was also observed. With this exploratory study, we suggested a scenario in which SCFAs metabolism and QS signaling might represent the effectors of gut dysbiosis potentially involved in the designation of the functional outcomes that contribute to the exacerbation of the neurodegenerative phenotype in the dual-hit animal model of PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Disbiosis/metabolismo , Filogenia , Oxidopamina , Butiratos
6.
Neurobiol Dis ; 174: 105897, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36257595

RESUMEN

Many studies have documented the important role of the gut microbiota (GM) in the regulation of several central nervous system (CNS) processes through the microbiota-gut-brain (MGB) axis. This latter represents the connection between the CNS, the enteric nervous system, the gut and its microbiota through several ascending and descending pathways. The variation of the GM composition is associated with the pathogenesis and/or progression as well as severity of various neuropsychiatric/neurological diseases such as depression, autism spectrum disorder, multiple sclerosis, Parkinson's, and Alzheimer's diseases. Recently, changes in the bacterial composition of the GM have also been linked to epilepsy and seizures, with some studies exploring the potential role of GM in the regulation of neuronal hyperexcitability, seizure occurrence and epileptogenesis. Accordingly, there are potential novel treatments which are currently being investigated such as probiotics, prebiotics and symbiotic that may represent innovative therapeutic approaches. The aim of this review is to explore the effect of gut microbiota manipulation as a therapeutic strategy in epilepsy and the methodological challenges to design (translational) clinical trial investigating the gut microbiota.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Microbioma Gastrointestinal , Probióticos , Humanos , Microbioma Gastrointestinal/fisiología , Prebióticos , Probióticos/uso terapéutico , Epilepsia/terapia
7.
Neurobiol Dis ; 170: 105758, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588991

RESUMEN

BACKGROUND: Data accumulation reveals that the bidirectional communication between the gut microbiota and the brain, called the microbiota-gut-brain axis (MGBA), can be modulated by different compounds including prebiotics, probiotics, symbiotic (a fair combination of both), and diet, thus exerting a beneficial impact on brain activity and behaviors. This review aims to give an overview of the possible beneficial effects of the supplementation of -biotics in epilepsy treatment. METHODS: A search on PubMed and ClinicalTrials.gov databases using the terms "probiotics", OR "prebiotics", AND "gut microbiota", AND "epilepsy" was performed. The search covered the period of the last eleven years (2010-2021). CONCLUSIONS: Nowadays, studies analyzing the clinical impact of gut microbiota-modulating intervention strategies on epilepsy are limited and heterogenous due either to the different experimental populations studied (i.e., genetic vs lesional mouse models) or the various primary outcomes measure evaluated. However, positive effects have invariably been noticed; particularly, there have been improvements in behavioral comorbidities and associated gastrointestinal (GI) symptoms. More studies will be needed in the next few years to strictly evaluate the feasibility to introduce these new therapeutic strategies in the clinical treatment of highly refractory epilepsies.


Asunto(s)
Epilepsia , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Probióticos , Animales , Epilepsia/tratamiento farmacológico , Ratones , Mitoguazona/análogos & derivados , Prebióticos , Probióticos/farmacología , Probióticos/uso terapéutico
8.
Neurol Sci ; 43(1): 125-138, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751849

RESUMEN

BACKGROUND: The current COVID-19 pandemic has abruptly catalysed a shift towards remote assessment in neuropsychological practice (tele-neuropsychology, t-NPs). Although the validity of t-NPs diagnostics is gaining recognition worldwide, little is known about its implementation in Italy. The present review by the Italian working group on tele-neuropsychology (TELA) aims at describing the availability, psychometric properties, and feasibility of t-NPs tools currently available in Italy. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. This work was pre-registered on the Prospective Register of Systematic Reviews (PROSPERO; CRD42021239687). Observational studies reporting telephone-, videoconference- or web-based assessment of cognition/behaviour in Italian both healthy participants (HPs) and patients were included. Bias assessment was performed through ad hoc scales. RESULTS: Fourteen studies were included from an initial N = 895 (4 databases searched). Studies were subdivided into those focused on psychometric properties and those characterized by a predominant applied nature. The majority of studies addressed either adult/elderly HPs or neurological/internal patients. Multi-domain screening tools for cognition, behaviour, mood/anxiety and quality of life were the most represented. Findings regarding validity, reliability, sensitivity, specificity and clinical usability were reported for cognitive screenings - the telephone- and videoconference-based Mini-Mental State Examination and the Telephone Interview for Cognitive Status. DISCUSSION: Positive albeit preliminary evidence regarding psychometric properties and feasibility in both clinical and non-clinical populations of Italian t-NPs brief screening tools are herewith provided. Further studies exploring clinical usability of t-NPs and psychometric properties/feasibility of tests for the in-depth assessment of specific cognitive domains are necessary.


Asunto(s)
COVID-19 , Calidad de Vida , Anciano , Humanos , Pandemias , Psicometría , Reproducibilidad de los Resultados , SARS-CoV-2
9.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742813

RESUMEN

Recent evidence highlights Parkinson's disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation before the 6-hydroxydopamine (6-OHDA) intrastriatal injection to mimic dysfunctional gut-associated mechanisms preceding PD onset. Therefore, we showed that dysbiosis and gut damage amplified PD progression, worsening motor deficits induced by 6-OHDA up to 14 days post intrastriatal injection. This effect was accompanied by a significant increase in neuronal dopaminergic loss (reduced tyrosine hydroxylase expression and increased Bcl-2/Bax ratio). Notably, CFX pretreatment also enhanced systemic and colon inflammation of dual-hit subjected mice. The exacerbated inflammatory response ran in tandem with a worsening of colonic architecture and gut microbiota perturbation. Finally, we demonstrated the beneficial effect of post-biotic sodium butyrate in limiting at once motor deficits, neuroinflammation, and colon damage and re-shaping microbiota composition in this novel dual-hit model of PD. Taken together, the bidirectional communication of the microbiota-gut-brain axis and the recapitulation of PD prodromal/pathogenic features make this new paradigm a useful tool for testing or repurposing new multi-target compounds in the treatment of PD.


Asunto(s)
Disbiosis , Enfermedad de Parkinson , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico , Disbiosis/patología , Inflamación/patología , Ratones , Oxidopamina , Enfermedad de Parkinson/metabolismo
10.
Allergy ; 76(5): 1398-1415, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33043467

RESUMEN

BACKGROUND: Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS: HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS: The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION: The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Animales , Butiratos , Hipersensibilidad a los Alimentos/prevención & control , Tolerancia Inmunológica , Leche Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA