Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 292(24): 10230-10238, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28455449

RESUMEN

Small ubiquitin-like modifier (SUMO) conjugation is a reversible post-translational modification process implicated in the regulation of gene transcription, DNA repair, and cell cycle. SUMOylation depends on the sequential activities of E1 activating, E2 conjugating, and E3 ligating enzymes. SUMO E3 ligases enhance transfer of SUMO from the charged E2 enzyme to the substrate. We have previously identified PIASy, a member of the Siz/protein inhibitor of activated STAT (PIAS) RING family of SUMO E3 ligases, as essential for mitotic chromosomal SUMOylation in frog egg extracts and demonstrated that it can mediate effective SUMOylation. To address how PIASy catalyzes SUMOylation, we examined various truncations of PIASy for their ability to mediate SUMOylation. Using NMR chemical shift mapping and mutagenesis, we identified a new SUMO-interacting motif (SIM) in PIASy. The new SIM and the currently known SIM are both located at the C terminus of PIASy, and both are required for the full ligase activity of PIASy. Our results provide novel insights into the mechanism of PIASy-mediated SUMOylation. PIASy adds to the growing list of SUMO E3 ligases containing multiple SIMs that play important roles in the E3 ligase activity.


Asunto(s)
Modelos Moleculares , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Represoras/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencias de Aminoácidos , Animales , Eliminación de Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Mutagénesis Sitio-Dirigida , Mutación , Isótopos de Nitrógeno , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Inhibidoras de STAT Activados/química , Proteínas Inhibidoras de STAT Activados/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitinas/química , Ubiquitinas/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis
2.
BMC Cancer ; 18(1): 809, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097032

RESUMEN

BACKGROUND: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively. METHODS: Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice. RESULTS: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10). CONCLUSION: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Gosipol/análogos & derivados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Productos Biológicos/administración & dosificación , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gosipol/administración & dosificación , Humanos , Liposomas/administración & dosificación , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proteins ; 84(8): 1097-107, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27093649

RESUMEN

The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/ß domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Proteínas de la Membrana/química , Salmonella/metabolismo , Shigella/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Células Epiteliales/microbiología , Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella/genética , Salmonella/crecimiento & desarrollo , Shigella/genética , Shigella/crecimiento & desarrollo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
4.
Chembiochem ; 17(8): 745-752, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26749041

RESUMEN

Many Gram-negative pathogens, such as Shigella and Salmonella, assemble the type III secretion system (T3SS) to inject virulence proteins directly into eukaryotic cells to initiate infectious diseases. The needle apparatus of the T3SS consists of a base, an extracellular needle, a tip protein complex, and a translocon. The atomic structure of the assembled tip complex and the translocon is unknown. Here, we show by NMR paramagnetic relaxation enhancement (PRE) that the mixed α-ß domain at the distal region of the Shigella and Salmonella tip proteins interacts with the N-terminal ectodomain of their major translocon proteins. Our results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and provide insights about the assembly of the needle apparatus of the T3SS.


Asunto(s)
Salmonella/química , Shigella/química , Sistemas de Secreción Tipo III/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Sistemas de Secreción Tipo III/aislamiento & purificación
5.
Biochemistry ; 54(43): 6576-85, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26451841

RESUMEN

Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS), to inject bacterial proteins directly into target host cells. An important regulator of the P. aeruginosa T3SS is the chaperone protein PcrG, which forms a complex with the tip protein, PcrV. In addition to its role as a chaperone to the tip protein, PcrG also regulates protein secretion. PcrG homologues are also important in the T3SS of other pathogens such as Yersinia pestis, the causative agent of bubonic plague. The atomic structure of PcrG or any member of the family of tip protein chaperones is currently unknown. Here, we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that PcrG lacks a tertiary structure. However, it is not completely disordered but contains secondary structures dominated by two long α-helices from residue 16 to 41 and from residue 55 to 76. The helices of PcrG are partially formed, have similar backbone dynamics, and are flexible. NMR titrations show that the entire length of PcrG residues from position 9 to 76 is involved in binding to PcrV. PcrG adds to the growing list of partially folded or unstructured proteins with important roles in type III secretion.


Asunto(s)
Proteínas Bacterianas/química , Pseudomonas aeruginosa/química , Sistemas de Secreción Tipo III/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Dicroismo Circular , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Desnaturalización Proteica , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/fisiología
6.
Biochemistry ; 52(15): 2508-17, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23521714

RESUMEN

Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Interacciones Huésped-Patógeno/fisiología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Biofisica , Bacterias Gramnegativas/patogenicidad , Conformación Proteica , Salmonella/patogenicidad , Salmonella/ultraestructura , Shigella/patogenicidad , Shigella/ultraestructura , Yersinia pestis/patogenicidad , Yersinia pestis/ultraestructura
7.
J Biol Chem ; 287(30): 25303-11, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22654099

RESUMEN

The type III secretion system (T3SS) is essential in the pathogenesis of many bacteria. The inner rod is important in the assembly of the T3SS needle complex. However, the atomic structure of the inner rod protein is currently unknown. Based on computational methods, others have suggested that the Salmonella inner rod protein PrgJ is highly helical, forming a folded 3 helix structure. Here we show by CD and NMR spectroscopy that the monomeric form of PrgJ lacks a tertiary structure, and the only well-structured part of PrgJ is a short α-helix at the C-terminal region from residues 65-82. Disruption of this helix by glycine or proline mutation resulted in defective assembly of the needle complex, rendering bacteria incapable of secreting effector proteins. Likewise, CD and NMR data for the Shigella inner rod protein MxiI indicate this protein lacks a tertiary structure as well. Our results reveal that the monomeric forms of the T3SS inner rod proteins are partially folded.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Pliegue de Proteína , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Salmonella typhimurium/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-23695558

RESUMEN

The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to 2.2 Šresolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of 1.65 Å. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28-Asn43 and displayed electron density in the loop region consisting of residues Ile46-Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77-Gln95 adopts a different orientation.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Citotóxicas Formadoras de Poros/química , Yersinia pestis , Antígenos Bacterianos/genética , Cristalografía por Rayos X , Mutación , Proteínas Citotóxicas Formadoras de Poros/genética , Estructura Secundaria de Proteína , Yersinia pestis/genética
9.
J Biol Chem ; 286(6): 4922-30, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21138848

RESUMEN

Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/fisiología , Proteínas de la Membrana/química , Modelos Moleculares , Salmonella typhimurium/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Relación Estructura-Actividad
10.
J Biol Chem ; 286(24): 21678-86, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21507948

RESUMEN

The RNA virus that causes the Crimean Congo Hemorrhagic Fever (CCHF) is a tick-borne pathogen of the Nairovirus genus, family Bunyaviridae. Unlike many zoonotic viruses that are only passed between animals and humans, the CCHF virus can also be transmitted from human to human with an overall mortality rate approaching 30%. Currently, there are no atomic structures for any CCHF virus proteins or for any Nairovirus proteins. A critical component of the virus is the envelope Gn glycoprotein, which contains a C-terminal cytoplasmic tail. In other Bunyaviridae viruses, the Gn tail has been implicated in host-pathogen interaction and viral assembly. Here we report the NMR structure of the CCHF virus Gn cytoplasmic tail, residues 729-805. The structure contains a pair of tightly arranged dual ßßα zinc fingers similar to those found in the Hantavirus genus, with which it shares about 12% sequence identity. Unlike Hantavirus zinc fingers, however, the CCHF virus zinc fingers bind viral RNA and contain contiguous clusters of conserved surface electrostatics. Our results provide insight into a likely role of the CCHF virus Gn zinc fingers in Nairovirus assembly.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas de la Cola de los Virus/química , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Escherichia coli/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Electricidad Estática , Dedos de Zinc
11.
Biophys J ; 98(3): 452-61, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20141759

RESUMEN

Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.


Asunto(s)
Proteínas Bacterianas/química , Shigella flexneri , Electricidad Estática , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Algoritmos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloruros/química , Elasticidad , Secuencias Hélice-Giro-Hélice , Modelos Moleculares , Simulación de Dinámica Molecular , Movimiento (Física) , Mutación , Conformación Proteica , Rotación , Sales (Química)/química , Grabación en Video
12.
Biochemistry ; 49(19): 4220-6, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20397637

RESUMEN

Salmonella and Shigella bacteria require the type III secretion system (T3SS) to inject virulence proteins into their hosts and initiate infections. The tip proteins SipD and IpaD are critical components of the Salmonella and Shigella T3SS, respectively. Recently, SipD and IpaD have been shown to interact with bile salts, which are enriched in the intestines, and are hypothesized to act as environmental sensors for these enteric pathogens. Bile salts activate the Shigella T3SS but repress the Salmonella T3SS, and the mechanism of this differing response to bile salts is poorly understood. Further, how SipD binds to bile salts is currently unknown. Computer modeling predicted that IpaD binds the bile salt deoxycholate in a cleft formed by the N-terminal domain and the long central coiled coil of IpaD. Here, we used NMR methods to determine which SipD residues are affected by the interaction with the bile salts deoxycholate, chenodeoxycholate, and taurodeoxcholate. The bile salts perturbed nearly the same set of SipD residues; however, the largest chemical shift perturbations occurred away from what was predicted for the bile salt binding site in IpaD. Our NMR results indicate that that bile salt interaction of SipD will be different from what was predicted for IpaD, suggesting a possible mechanism for the differing response of Salmonella and Shigella to bile salts.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Ácidos y Sales Biliares/metabolismo , Proteínas de la Membrana/química , Salmonella/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
13.
Protein Sci ; 28(9): 1582-1593, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301256

RESUMEN

Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.


Asunto(s)
Bacterias Gramnegativas/patogenicidad , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Virulencia
14.
J Mol Biol ; 371(5): 1304-14, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17617421

RESUMEN

Gram-negative bacteria use a needle-like protein assembly, the type III secretion apparatus, to inject virulence factors into target cells to initiate human disease. The needle is formed by the polymerization of approximately 120 copies of a small acidic protein that is conserved among diverse pathogens. We previously reported the structure of the BsaL needle monomer from Burkholderia pseudomallei by nuclear magnetic resonance (NMR) spectroscopy and others have determined the crystal structure of the Shigella flexneri MxiH needle. Here, we report the NMR structure of the PrgI needle protein of Salmonella typhimurium, a human pathogen associated with food poisoning. PrgI, BsaL, and MxiH form similar two helix bundles, however, the electrostatic surfaces of PrgI differ radically from those of BsaL or MxiH. In BsaL and MxiH, a large negative area is on a face formed by the helix alpha1-alpha2 interface. In PrgI, the major negatively charged surface is not on the "face" but instead is on the "side" of the two-helix bundle, and only residues from helix alpha1 contribute to this negative region. Despite being highly acidic proteins, these molecules contain large basic regions, suggesting that electrostatic contacts are important in needle assembly. Our results also suggest that needle-packing interactions may be different among these bacteria and provide the structural basis for why PrgI and MxiH, despite 63% sequence identity, are not interchangeable in S. typhimurium and S. flexneri.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Bacterias Gramnegativas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Salmonella typhimurium/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Propiedades de Superficie
15.
Elife ; 72018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015613

RESUMEN

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Islas de CpG , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Polimerizacion , Unión Proteica , Estructura Secundaria de Proteína , Salmonella typhimurium/citología , Salmonella typhimurium/ultraestructura , Sistemas de Secreción Tipo III/ultraestructura
16.
J Mol Biol ; 355(5): 1005-13, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16253272

RESUMEN

Regulation of transcription requires interactions between transcriptional activators and transcriptional co-activator CREB binding protein (CBP). The KIX domain of CBP can bind simultaneously to two different proteins, providing an additional mechanism for transcriptional regulation. Here we describe the solution structure of the ternary complex formed by cooperative binding of activation domains from the c-Myb and mixed lineage leukemia (MLL) transcription factors to the KIX domain. The MLL and c-Myb domains form helices that bind to two distinct hydrophobic grooves on opposite faces of KIX. Compared to the binary KIX:c-Myb complex, significant changes are observed in the structure of KIX at the MLL binding interface in the ternary complex. Two regions of KIX that are disordered in the binary complex become structured in the ternary complex: a flexible loop forms intimate contacts with bound MLL, and the C-terminal helix is extended and stabilized by MLL binding. This structural change results in the formation of additional electrostatic/polar interactions between KIX and the bound c-Myb, providing a structural basis for the cooperativity observed for the ternary complex.


Asunto(s)
Proteína de Unión a CREB , Proteína de la Leucemia Mieloide-Linfoide , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myb , Secuencia de Aminoácidos , Animales , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Proto-Oncogénicas c-myb/metabolismo , Alineación de Secuencia
17.
J Mol Biol ; 359(2): 322-30, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16631790

RESUMEN

Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Burkholderia pseudomallei/química , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Burkholderia pseudomallei/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
18.
ChemMedChem ; 12(18): 1534-1541, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28750143

RESUMEN

Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Shigella/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Espectroscopía de Resonancia Magnética , Unión Proteica , Quinolinas/química , Quinolinas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Resonancia por Plasmón de Superficie , Sistemas de Secreción Tipo III
19.
PLoS One ; 12(4): e0175471, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28414767

RESUMEN

The RNA-binding protein Hu antigen R (HuR) binds to AU-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs. The HuR-ARE interactions stabilize many oncogenic mRNAs that play important roles in tumorigenesis. Thus, small molecules that interfere with the HuR-ARE interaction could potentially inhibit cancer cell growth and progression. Using a fluorescence polarization (FP) competition assay, we identified the compound azaphilone-9 (AZA-9) derived from the fungal natural product asperbenzaldehyde, binds to HuR and inhibits HuR-ARE interaction (IC50 ~1.2 µM). Results from surface plasmon resonance (SPR) verified the direct binding of AZA-9 to HuR. NMR methods mapped the RNA-binding interface of HuR and identified the involvement of critical RNA-binding residues in binding of AZA-9. Computational docking was then used to propose a likely binding site for AZA-9 in the RNA-binding cleft of HuR. Our results show that AZA-9 blocks key RNA-binding residues of HuR and disrupts HuR-RNA interactions in vitro. This knowledge is needed in developing more potent AZA-9 derivatives that could lead to new cancer therapy.


Asunto(s)
Benzopiranos/farmacología , Productos Biológicos/farmacología , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Hongos/química , Pigmentos Biológicos/farmacología , ARN/metabolismo , Regiones no Traducidas 3'/efectos de los fármacos , Elementos Ricos en Adenilato y Uridilato/efectos de los fármacos , Antígenos de Superficie/metabolismo , Sitios de Unión/efectos de los fármacos , Polarización de Fluorescencia/métodos , Humanos , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
20.
ChemMedChem ; 11(9): 963-71, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26990667

RESUMEN

Many Gram-negative bacteria require the type III secretion system (T3SS) to cause infectious diseases in humans. A looming public health problem is that all bacterial pathogens that require the T3SS to cause infectious diseases in humans have developed multidrug resistance to current antibiotics. The T3SS is an attractive target for the development of new antibiotics because of its critical role in virulence. An initial step in developing anti-T3SS-based therapeutics is the identification of small molecules that can bind to T3SS proteins. Currently, the only small molecules that are known to bind to the Salmonella T3SS proteins SipD and SipB are bile salts (to SipD) and sphingolipids and cholesterol (to SipB). Herein we report the results of a surface plasmon resonance screen of 288 compounds wherein the binding of 4-morpholinoaniline to SipD, 3-indoleacetic acid to SipB, and 5-hydroxyindole to both SipD and SipB were identified. We also identified by NMR the SipD surfaces involved in binding. These three compounds represent a new class of molecules that can bind to T3SS tip (SipD) and translocon (SipB) proteins that could find use in future drug design.


Asunto(s)
Compuestos de Anilina/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Salmonella/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Compuestos de Anilina/química , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Ácidos Indolacéticos/química , Indoles/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Resonancia por Plasmón de Superficie , Sistemas de Secreción Tipo III/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA