Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Neuropsychopharmacol ; 27(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546531

RESUMEN

BACKGROUND: The proliferation of novel psychoactive substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS: By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and rewarding properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS: 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate the emission of 50-kHz USVs. CONCLUSIONS: This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA by increasing awareness on possible health damage in users.


Asunto(s)
Dopamina , Núcleo Accumbens , Corteza Prefrontal , Serotonina , Animales , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Serotonina/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Locomoción/efectos de los fármacos , Microdiálisis , Factores de Edad , Conducta Animal/efectos de los fármacos , Conducta Estereotipada/efectos de los fármacos , Vocalización Animal/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Ratas Wistar , Alucinógenos/farmacología
2.
Arch Pharm (Weinheim) ; 356(1): e2200432, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36328777

RESUMEN

The development of novel µ-opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3-[3-(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO-induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra-Precision Glide and Generalized-Born Surface Area experiments provided useful information on the nature of the ligand-receptor interactions, indicating a peculiar combination of C-1 stereochemistry and N-substitutions as feasibly essential for MOR-ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR-ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3-cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.


Asunto(s)
Naltrexona , Antagonistas de Narcóticos , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/química , Ligandos , Fenoles/farmacología , Relación Estructura-Actividad , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982327

RESUMEN

Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered "safe". An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.


Asunto(s)
Ansiolíticos , Cannabidiol , Cannabis , Alucinógenos , Adulto , Adolescente , Humanos , Cannabidiol/farmacología , Dronabinol/efectos adversos , Cannabis/química , Agonistas de Receptores de Cannabinoides
4.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202634

RESUMEN

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4'-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Neuronas/efectos de los fármacos , Psicotrópicos/efectos adversos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Psicotrópicos/química , Psicotrópicos/toxicidad , Relación Estructura-Actividad
5.
J Neurosci ; 39(5): 929-943, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30446531

RESUMEN

Alcohol abuse leads to aberrant forms of emotionally salient memory, i.e., limbic memory, that promote escalated alcohol consumption and relapse. Accordingly, activity-dependent structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing chronic alcohol consumption. Here we show that alcohol-dependent male rats fail to perform an emotional-learning task during abstinence but recover their functioning by l-3,4-dihydroxyphenylalanin (l-DOPA) administration during early withdrawal. l-DOPA also reverses the selective loss of dendritic "long thin" spines observed in medium spiny neurons of the nucleus accumbens (NAc) shell of alcohol-dependent rats during abstinence, as well as the reduction in tyrosine hydroxylase immunostaining and postsynaptic density-95-positive elements. Patch-clamp experiments in NAc slices reveal that both in vivo systemic l-DOPA administration and in vitro exposure to dopamine can restore the loss of long-term depression (LTD) formation, counteract the reduction in NMDAR-mediated synaptic currents and rectify the altered NMDAR/AMPAR ratio observed in alcohol-withdrawn rats. Further, in vivo microdialysis experiments show that blunted dopaminergic signaling is revived after l-DOPA treatment during early withdrawal. These results suggest a key role of an efficient dopamine signaling for maintaining, and restore, neural trophism, NMDA-dependent LTD, and ultimately optimal learning.SIGNIFICANCE STATEMENT Blunted dopamine signaling and altered glutamate connectivity in the nucleus accumbens represent the neuroanatomical basis for the impairment in aversive limbic memory observed during withdrawal in alcohol dependence. Supplying l-DOPA during withdrawal re-establishes synaptic morphology and functional neuroadaptations, suggesting a complete recovery of nucleus accumbens glutamatergic synaptic plasticity when dopamine is revived. Importantly, restoring dopamine transmission allows those synapses to encode emotionally relevant information and rescue flexibility in the neuronal circuits that process limbic memory formation. Under these conditions, drugs capable of selectively boosting the dopaminergic function during the "fluid" and still responsive state of the early withdrawn maladaptive synapses may help in the treatment of alcohol addiction.


Asunto(s)
Alcoholismo/psicología , Espinas Dendríticas/efectos de los fármacos , Dopamina/farmacología , Sistema Límbico/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Núcleo Accumbens/patología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Abstinencia de Alcohol/psicología , Animales , Espinas Dendríticas/patología , Espinas Dendríticas/ultraestructura , Dopaminérgicos/farmacología , Levodopa/farmacología , Masculino , Trastornos de la Memoria/psicología , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos
6.
Hum Psychopharmacol ; 32(3)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28657180

RESUMEN

BACKGROUND: 4,4'-DMAR (4,4'-dimethylaminorex; "Serotoni") is a potent stimulant drug that has recently been associated with a number of fatalities in Europe. Over the last few years, online communities have emerged as important resources for disseminating levels of technical knowledge on novel psychoactive substances. OBJECTIVE: Analysing the information provided by the fora communities on 4,4'-DMAR use, additionally critical reviewing the available evidence-based literature on this topic. METHODS: Different website drug fora were identified. A critical review of the existing evidence-based literature was undertaken. Individuation and analysis of qualitative data from the identified website fora were performed. RESULTS: The combined search results identified six website fora from which a range of qualitative data on recurring themes was collected. These themes included routes of administration and doses; desired effects; adverse effects; comparison with other drugs; association with other drugs; medications self-administered to reverse 4,4'-DMAR action; overall impression; and provision of harm-reduction advice. CONCLUSIONS: Although being characterized by a number of methodological limitations, the social networks' Web monitoring approach (netnography) may be helpful to better understand some of the clinical and psychopharmacological issues pertaining to a range of novel psychoactive substances, including 4,4'-DMAR, for which only extremely little, if any, scientific knowledge is available.


Asunto(s)
Drogas Ilícitas/efectos adversos , Internet/tendencias , Oxazoles/efectos adversos , Psicotrópicos/efectos adversos , Trastornos Relacionados con Sustancias/epidemiología , Europa (Continente)/epidemiología , Humanos , Drogas Ilícitas/química , Oxazoles/química , Psicotrópicos/química , Autoinforme/normas , Trastornos Relacionados con Sustancias/diagnóstico , Trastornos Relacionados con Sustancias/psicología
7.
J Neurochem ; 131(3): 284-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24989117

RESUMEN

Epidemiological studies have indicated an inverse association between high uricemia and incidence of Parkinson's disease (PD). To investigate the link between endogenous urate and neurotoxic changes involving the dopaminergic nigrostriatal system, this study evaluated the modifications in the striatal urate levels in two models of PD. To this end, a partial dopaminergic degeneration was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice, while a severe dopaminergic degeneration was elicited by unilateral medial forebrain bundle infusion of 6-hydroxydopamine (6-OHDA) in rats. Urate levels were measured by in vivo microdialysis at 7 or 14 days from toxin exposure. The results obtained demonstrated higher urate levels in the dopamine-denervated striatum of 6-OHDA-lesioned rats compared with the intact striatum. Moreover, an inverse correlation between urate and dopamine levels was observed in the same area. In contrast, only a trend to significant increase in striatal urate was observed in MPTP-treated mice. These results demonstrate that a damage to the dopaminergic nigrostriatal system elevates the striatal levels of urate, and suggest that this could be an endogenous compensatory mechanism to attenuate dopaminergic neurodegeneration. This finding may be important in light of the epidemiological and preclinical evidences that indicate a link between urate and development of PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Intoxicación por MPTP/metabolismo , Neostriado/metabolismo , Neostriado/patología , Enfermedad de Parkinson Secundaria/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Ácido Úrico/metabolismo , Animales , Dopamina/metabolismo , Hidroxidopaminas , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Sprague-Dawley
8.
J Neuroimmunol ; 389: 578325, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432046

RESUMEN

The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.


Asunto(s)
Cannabinoides , Indoles , Naftalenos , Factor A de Crecimiento Endotelial Vascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Cannabinoides/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Encéfalo/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Microglía/metabolismo , Dopamina/farmacología
9.
Toxicology ; : 153878, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972446

RESUMEN

The use of synthetic cannabinoid receptor agonists (SCRAs) represents a public health concern. Besides abuse liability and cognitive impairments, SCRA consumption is associated with serious medical consequences in humans, including cardiotoxicity. The precise mechanisms underlying cardiac or other toxicities induced by SCRAs are not well understood. Here, we used in silico, in vivo, and ex vivo approaches to investigate the toxicological consequences induced by exposure to the SCRA JWH-018. Along with in silico predictive toxicological screening of 36 SCRAs by MC4PC software, adult male Sprague-Dawley rats were repeatedly exposed to JWH-018 (0.25mg/kg ip) for 14 consecutive days, with body temperature and cardiovascular parameters measured over the course of treatment. At 1 and 7 days after JWH-018 discontinuation, multiorgan tissue pathologies and heart mitochondria bioenergetics were assessed. The in silico findings predicted risk of cardiac adverse effects specifically for JWH-018 and other aminoalkylindole SCRAs (i.e., electrocardiogram abnormality and QT prolongation). The results from rats revealed that repeated, but not single, JWH-018 exposure induced hypothermia and cardiovascular stimulation (e.g., increased blood pressure and heart rate) which persisted throughout treatment. Post-mortem findings demonstrated cardiac lesions (i.e., vacuolization, waving, edema) 1 day after JWH-018 discontinuation, which may contribute to lungs, kidneys, and liver tissue degeneration observed 7 days later. Importantly, repeated JWH-018 exposure induced mitochondrial dysfunction in cardiomyocytes, i.e., defective lipid OXPHOS, which may represent one mechanism of JWH-018-induced toxicity. Our results demonstrate that repeated administration of even a relatively low dose of JWH-018 is sufficient to affect cardiovascular function and induce enduring toxicological consequences, pointing to risks associated with SCRA consumption.

10.
Eur J Neurosci ; 37(4): 613-22, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23216547

RESUMEN

Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC.


Asunto(s)
Química Encefálica/fisiología , Dopamina/metabolismo , Habituación Psicofisiológica/fisiología , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Animales , Inmunohistoquímica , Masculino , Microdiálisis , Núcleo Accumbens/química , Corteza Prefrontal/química , Ratas , Ratas Sprague-Dawley , Gusto/fisiología
11.
Brain ; 135(Pt 9): 2750-65, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22915735

RESUMEN

Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel(-/-) mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel(-/-) mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel(-/-) mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel(-/-) mice may be a suitable model of Parkinson's disease.


Asunto(s)
Envejecimiento/genética , Neuronas Dopaminérgicas/patología , FN-kappa B/genética , Trastornos Parkinsonianos/genética , Sustancia Negra/patología , Envejecimiento/metabolismo , Animales , Recuento de Células , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido Homovanílico/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/genética , FN-kappa B/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
12.
Biomedicines ; 10(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289598

RESUMEN

The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.

13.
Pharmaceutics ; 14(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631674

RESUMEN

Needle-free liquid jet injectors are medical devices used to administer pharmaceutical solutions through the skin. Jet injectors generate a high-speed stream of liquid medication that can puncture the skin and deliver the drug to the underlying tissues. In this work, we investigated the feasibility of using liquid jet injectors to administer nanosuspensions, assessing the impact of the jet injection on their pharmaceutical and physicochemical properties. For this purpose, the model drug diclofenac was used to prepare a set of nanosuspensions, stabilized by poloxamer 188, and equilibrated at different pHs. The hydrodynamic diameter and morphology of the nanocrystals were analyzed before and after the jet injection across porcine skin in vitro, together with the solubility and release kinetics of diclofenac in a simulated subcutaneous environment. The efficacy of the jet injection (i.e., the amount of drug delivered across the skin) was evaluated for the nanosuspension and for a solution, which was used as a control. Finally, the nanosuspension was administered to rats by jet injector, and the plasma profile of diclofenac was evaluated and compared to the one obtained by jet injecting a solution with an equal concentration. The nanosuspension features were maintained after the jet injection in vitro, suggesting that no structural changes occur upon high-speed impact with the skin. Accordingly, in vivo studies demonstrated the feasibility of jet injecting a nanosuspension, reaching relevant plasma concentration of the drug. Overall, needle-free jet injectors proved to be a suitable alternative to conventional syringes for the administration of nanosuspensions.

14.
Neuropharmacology ; 221: 109263, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36154843

RESUMEN

Recent trends of opioid abuse and related fatalities have highlighted the critical role of Novel Synthetic Opioids (NSOs). We studied the µ-opioid-like properties of isotonitazene (ITZ), metonitazene (MTZ), and piperidylthiambutene (PTB) using different approaches. In vitro studies showed that ITZ and MTZ displayed a higher potency in both rat membrane homogenates (EC50:0.99 and 19.1 nM, respectively) and CHO-MOR (EC50:0.71 and 10.0 nM, respectively) than [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), with no difference in maximal efficacy (Emax) between DAMGO and NSOs. ITZ also has higher affinity (Ki:0.06 and 0.05 nM) at the MOR than DAMGO in both systems, whilst MTZ has higher affinity in CHO-MOR (Ki=0.23 nM) and similar affinity in rat cerebral cortex (Ki = 0.22 nM). PTB showed lower affinity and potency than DAMGO. In vivo, ITZ displayed higher analgesic potency than fentanyl and morphine (ED50:0.00156, 0.00578, 2.35 mg/kg iv, respectively); ITZ (0.01 mg/kg iv) and MTZ (0.03 mg/kg iv) reduced behavioral activity and increased dialysate dopamine (DA) in the NAc shell (max. about 200% and 170% over basal value, respectively. Notably, ITZ elicited an increase in DA comparable to that of higher dose of morphine (1 mg/kg iv), but higher than the same dose of fentanyl (0.01 mg/kg iv). In silico, induced fit docking (IFD) and metadynamic simulations (MTD) showed that binding modes and structural changes at the receptor, ligand stability, and the overall energy score of NSOs were consistent with the results of the biological assays.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Animales , Ratas , Analgésicos Opioides/farmacología , Receptores Opioides mu/agonistas , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Morfina/farmacología , Fentanilo
15.
Psychopharmacology (Berl) ; 239(10): 3083-3102, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35943523

RESUMEN

RATIONALE: The use of synthetic cannabinoid receptor agonists (SCRAs) is growing among adolescents, posing major medical and psychiatric risks. JWH-018 represents the reference compound of SCRA-containing products. OBJECTIVES: This study was performed to evaluate the enduring consequences of adolescent voluntary consumption of JWH-018. METHODS: The reinforcing properties of JWH-018 were characterized in male CD1 adolescent mice by intravenous self-administration (IVSA). Afterwards, behavioral, neurochemical, and molecular evaluations were performed at adulthood. RESULTS: Adolescent mice acquired operant behavior (lever pressing, Fixed Ratio 1-3; 7.5 µg/kg/inf); this behavior was specifically directed at obtaining JWH-018 since it increased under Progressive Ratio schedule of reinforcement, and was absent in vehicle mice. JWH-018 IVSA was reduced by pretreatment of the CB1-antagonist/inverse agonist AM251. Adolescent exposure to JWH-018 by IVSA increased, at adulthood, both nestlet shredding and marble burying phenotypes, suggesting long-lasting repetitive/compulsive-like behavioral effects. JWH-018 did not affect risk proclivity in the wire-beam bridge task. In adult brains, there was an increase of ionized calcium binding adaptor molecule 1 (IBA-1) positive cells in the caudate-putamen (CPu) and nucleus accumbens (NAc), along with a decrease of glial fibrillary acidic protein (GFAP) immunoreactivity in the CPu. These glial alterations in adult brains were coupled with an increase of the chemokine RANTES and a decrease of the cytokines IL2 and IL13 in the cortex, and an increase of the chemokine MPC1 in the striatum. CONCLUSIONS: This study suggests for the first time that male mice self-administer the prototypical SCRA JWH-018 during adolescence. The adolescent voluntary consumption of JWH-018 leads to long-lasting behavioral and neurochemical aberrations along with glia-mediated inflammatory responses in adult brains.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Quimiocina CCL5 , Animales , Calcio , Carbonato de Calcio , Agonistas de Receptores de Cannabinoides/farmacología , Proteína Ácida Fibrilar de la Glía , Indoles , Interleucina-13 , Interleucina-2 , Masculino , Ratones , Naftalenos , Receptor Cannabinoide CB1
16.
Curr Opin Pharmacol ; 58: 8-20, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845377

RESUMEN

Oxytocin regulates a variety of centrally-mediated functions, ranging from socio-sexual behavior, maternal care, and affiliation to fear, stress, anxiety. In the past years, both clinical and preclinical studies characterized oxytocin for its modulatory role on reward-related neural substrates mainly involving the interplay with the mesolimbic and mesocortical dopaminergic pathways. This suggests a role of this nonapeptide on the neurobiology of addiction raising the possibility of its therapeutic use. Although far from a precise knowledge of the underlying mechanisms, the putative role of the bed nucleus of the stria terminalis as a key structure where oxytocin may rebalance altered neurochemical processes and neuroplasticity involved in dependence and relapse has been highlighted. This view opens new opportunities to address the health problems related to drug misuse.


Asunto(s)
Oxitocina , Núcleos Septales , Ansiedad , Humanos , Plasticidad Neuronal
17.
Exp Neurol ; 345: 113836, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34384790

RESUMEN

Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.


Asunto(s)
Ciclohexanonas/farmacología , Ciclohexilaminas/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Drogas Ilícitas/farmacología , Inhibición Prepulso/efectos de los fármacos , Receptores de Serotonina 5-HT2/metabolismo , Estimulación Acústica/efectos adversos , Animales , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Técnicas de Cultivo de Órganos , Inhibición Prepulso/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Br J Pharmacol ; 178(17): 3476-3497, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837969

RESUMEN

BACKGROUND AND PURPOSE: Spice/K2 herbal mixtures, containing synthetic cannabinoids such as JWH-018, have been marketed as marijuana surrogates since 2004. JWH-018 has cannabinoid CB1 receptor-dependent reinforcing properties and acutely increases dopaminergic transmission selectively in the NAc shell. Here, we tested the hypothesis that repeated administration of JWH-018 (i) modulates behaviour, (ii) affects dopaminergic transmission and its responsiveness to motivational stimuli, and (iii) is associated with a neuroinflammatory phenotype. EXPERIMENTAL APPROACH: Rats were administered with JWH-018 once a day for 14 consecutive days. We then performed behavioural, electrophysiological, and neurochemical evaluation at multiple time points after drug discontinuation. KEY RESULTS: Repeated JWH-018 exposure (i) induced anxious and aversive behaviours, transitory attentional deficits, and withdrawal signs; (ii) decreased spontaneous activity and number of dopamine neurons in the VTA; and (iii) reduced stimulation of dopaminergic transmission in the NAc shell while potentiating that in the NAc core, in response to acute JWH-018 challenge. Moreover, (iv) we observed a decreased dopamine sensitivity in the NAc shell and core, but not in the mPFC, to a first chocolate exposure; conversely, after a second exposure, dialysate dopamine fully increased in the NAc shell and core but not in the mPFC. Finally, selected dopamine brain areas showed (v) astrogliosis (mPFC, NAc shell and core, VTA), microgliosis (NAc shell and core), and downregulation of CB1 receptors (mPFC, NAc shell and core). CONCLUSION AND IMPLICATIONS: Repeated exposure to JWH-018 may provide a useful model to clarify the detrimental effects of recurring use of Spice/K2 drugs.


Asunto(s)
Dopamina , Naftalenos , Animales , Indoles/farmacología , Naftalenos/farmacología , Neuroglía , Núcleo Accumbens , Ratas
19.
Synapse ; 64(5): 341-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20029831

RESUMEN

The aim of this research was to study the role of dopamine D(1) receptors in caffeine elicited ERK phosphorylation in the prefrontal and other cortical (cingulate and motor) and subcortical (shell and core of the nucleus accumbens) regions. To this end, caffeine (3 and 10 mg/kg) was administered before phosphoERK immunohistochemistry. Caffeine dose-dependently increased the number of phosphoERK-positive neurons in the prefrontal and cingulate cortices but not in the secondary motor cortex and in the nucleus accumbens shell and core. The dopamine D(1) receptor antagonist, SCH 39166 (50 microg/kg), fully prevented phosphoERK activation by caffeine (10 mg/kg) in the superficial and deep layers of the prefrontal cortex but failed to prevent it in the cingulate cortex. Given that phosphoERK can be regarded as a postsynaptic marker of neuronal activation, the present results indicate that psychotropic properties of caffeine may result from the activation of prefrontal, via dopamine D(1) receptors, and cingulate cortices. Failure of caffeine to activate ERK in the nucleus accumbens further supports, indirectly, the observation that caffeine fails to activate dopamine transmission in this structure and is consistent with the tenet that caffeine lacks of true addictive properties.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Benzazepinas/farmacología , Encéfalo/enzimología , Cafeína/administración & dosificación , Recuento de Células , Estimulantes del Sistema Nervioso Central/administración & dosificación , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Antagonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Masculino , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/enzimología , Núcleo Accumbens/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inhibidores
20.
Front Pharmacol ; 11: 806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670057

RESUMEN

Stimulant drugs, including novel psychoactive substances (NPS, formerly "legal highs") have addictive potential which their users may not realize. Stimulants increase extracellular dopamine levels in the brain, including the reward and addiction pathways, through interacting with dopamine transporter (DAT). This work aimed to assess the molecular and atomistic mechanisms of stimulant NPS actions at DAT, which translate into biological outcomes such as dopamine release in the brain's reward pathway. We applied combined in vitro, in vivo, and in silico methods and selected 2-diphenylmethylpiperidine (2-DPMP) as an example of stimulant NPS for this study. We measured in vitro binding of 2-DPMP to rat striatum and accumbens DAT by means of quantitative autoradiography with a selective DAT-radioligand [125I]RTI-121. We evaluated the effects of intravenously administered 2-DPMP on extracellular dopamine in the accumbens-shell and striatum using in vivo microdialysis in freely moving rats. We used dynamic modeling to investigate the interactions of 2-DPMP within DAT, in comparison with cocaine and amphetamine. 2-DPMP potently displaced the radioligand in the accumbens and striatum showing dose-dependence from 0.3 to 30 µM. IC50 values were: 5.65 × 10-7M for accumbens shell and 6.21 × 10-7M for dorsal striatum. Dose-dependent responses were also observed in accumbens-shell and striatum in vivo, with significant increases in extracellular dopamine levels. Molecular dynamics simulations identified contrasting conformational changes of DAT for inhibitors (cocaine) and releasers (amphetamine). 2-DPMP led to molecular rearrangements toward an outward-facing DAT conformation that suggested a cocaine-type effect. The present combination of molecular modeling with experimental neurobiological procedures allows for extensive characterization of the mechanisms of drug actions at DAT as the main molecular target of stimulants, and provides an insight into the role of dopamine in the molecular and neurobiological mechanisms of brain responses to stimulant NPS that have addictive potential. Such knowledge reveals the risk of addiction related to NPS use. The research presented here can be adapted for other psychostimulants that act at their membrane protein targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA