RESUMEN
Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
Asunto(s)
Secuencia Conservada , Evolución Molecular , Genoma , Primates , Animales , Femenino , Humanos , Embarazo , Secuencia Conservada/genética , Desoxirribonucleasa I/metabolismo , ADN/genética , ADN/metabolismo , Genoma/genética , Mamíferos/clasificación , Mamíferos/genética , Placenta , Primates/clasificación , Primates/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Proteínas/genética , Regulación de la Expresión Génica/genéticaRESUMEN
The global decline of terrestrial species is largely due to the degradation, loss and fragmentation of their habitats. The conversion of natural ecosystems for cropland, rangeland, forest products and human infrastructure are the primary causes of habitat deterioration. Due to the paucity of data on the past distribution of species and the scarcity of fine-scale habitat conversion maps, however, accurate assessment of the recent effects of habitat degradation, loss and fragmentation on the range of mammals has been near impossible. We aim to assess the proportions of available habitat within the lost and retained parts of mammals' distribution ranges, and to identify the drivers of habitat availability. We produced distribution maps for 475 terrestrial mammals for the range they occupied 50 years ago and compared them to current range maps. We then calculated the differences in the percentage of 'area of habitat' (habitat available to a species within its range) between the lost and retained range areas. Finally, we ran generalized linear mixed models to identify which variables were more influential in determining habitat availability in the lost and retained parts of the distribution ranges. We found that 59% of species had a lower proportion of available habitat in the lost range compared to the retained range, thus hypothesizing that habitat loss could have contributed to range declines. The most important factors negatively affecting habitat availability were the conversion of land to rangeland and high density of livestock. Significant intrinsic traits were those related to reproductive timing and output, habitat breadth and medium body size. Our findings emphasize the importance of implementing conservation strategies to mitigate the impacts caused by human activities on the habitats of mammals, and offer evidence indicating which species have the potential to reoccupy portions of their former range if other threats cease to occur.
Asunto(s)
Ecosistema , Ganado , Animales , Humanos , Conservación de los Recursos Naturales , Mamíferos , BosquesRESUMEN
Mitochondrial DNA remains a cornerstone for molecular ecology, especially for study species from which high-quality tissue samples cannot be easily obtained. Methods using mitochondrial markers are usually reliant on reference databases, but these are often incomplete. Furthermore, available mitochondrial genomes often lack crucial metadata, such as sampling location, limiting their utility for many analyses. Here, we assembled 205 new mitochondrial genomes for platyrrhine primates, most from the Amazon and with known sampling locations. We present a dated mitogenomic phylogeny based on these samples along with additional published platyrrhine mitogenomes, and use this to assess support for the long-standing riverine barrier hypothesis (RBH), which proposes that river formation was a major driver of speciation in Amazonian primates. Along the Amazon, Negro, and Madeira rivers, we found mixed support for the RBH. While we identified divergences that coincide with a river barrier, only some occur synchronously and also overlap with the proposed dates of river formation. The most compelling evidence is for the Amazon river potentially driving speciation within bearded saki monkeys (Chiropotes spp.) and within the smallest extant platyrrhines, the marmosets and tamarins. However, we also found that even large rivers do not appear to be barriers for some primates, including howler monkeys (Alouatta spp.), uakaris (Cacajao spp.), sakis (Pithecia spp.), and robust capuchins (Sapajus spp.). Our results support a more nuanced, clade-specific effect of riverine barriers and suggest that other evolutionary mechanisms, besides the RBH and allopatric speciation, may have played an important role in the diversification of platyrrhines.
Asunto(s)
Genoma Mitocondrial , Ríos , Animales , Evolución Biológica , Genoma Mitocondrial/genética , Filogenia , PrimatesRESUMEN
[This corrects the article DOI: 10.1093/biosci/biaa082.].
RESUMEN
Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon.
RESUMEN
The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. molochâ¯+â¯P. vieirai. The species EOO is 10,166,653â¯ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24â¯years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.
Asunto(s)
Pitheciidae/clasificación , Animales , Teorema de Bayes , Brasil , Citocromos b/genética , Ecosistema , Especies en Peligro de Extinción , Genoma , Mitocondrias/genética , Filogenia , Pitheciidae/anatomía & histología , Pitheciidae/genética , Polimorfismo de Nucleótido SimpleRESUMEN
The taxonomy of muriquis,â¯the largest extant primates in the New World,â¯is controversial. While some specialists argue for a monotypic genus (Brachyteles arachnoides), others favor a two-species classification, splitting northern muriquis (Brachyteles hypoxanthus) from southern muriquis (B. arachnoides). This uncertainty affects how we study the differences between these highly endangered and charismatic primates, as well as the design of more effective conservation programs. To address this issue, between 2003 and 2017 we collected over 230 muriqui fecal samples across the genus' distribution in the Brazilian Atlantic Forest, extracted DNA from these samples, and sequenced 423 base pairs of the mitochondrial DNA (mtDNA) control region. Phylogenetic and species delimitation analyses of our sequence dataset robustly support two reciprocally monophyletic groups corresponding to northern and southern muriquis separated by an average 12.7% genetic distance. The phylogeographic break between these lineages seems to be associated with the Paraíba do Sul River and coincides with the transition between the north and south Atlantic Forest biogeographic zones. Published divergence estimates from whole mitochondrial genomes and nuclear loci date the split between northern and southern muriquis to the Early Pleistocene (ca. 2.0 mya), and our new mtDNA dataset places the coalescence time for each of these two clades near the last interglacial (ca. 120-80 kya). Our results, together with both phenotypic and ecological differences, support recognizing northern and southern muriquis as sister species that should be managed as distinct evolutionarily significant units. Given that only a few thousand muriquis remain in nature, it is imperative that conservation strategies are tailored to protect both species from extinction.
Asunto(s)
Atelinae/genética , Variación Genética , Atelinae/clasificación , Brasil , ADN Mitocondrial/análisis , Especies en Peligro de Extinción , Heces/química , FilogeografíaRESUMEN
Endemic to the Atlantic Forest in Southeastern Brazil, the critically endangered Buffy-Headed marmoset (Callithrix flaviceps) is lacking the required attention for effective conservation. We modelled its ecological niche with the main objectives of (1) defining suitable habitat and (2) prioritising areas for conservation and/or restoration. The current geographical range of Callithrix flaviceps in the Atlantic Forest of Southeast Brazil. We used Ensemble Species Distribution Modelling to define current habitat suitability considering four climate and two landscape variables. To identify areas to prioritise for conservation and/or restoration, we predicted future habitat suitability considering the intermediate (RCP4.5) and extreme (RCP8.5) climate change scenarios for the years 2050 and 2070. Among the variables included to predict current species distribution, tree canopy cover, precipitation seasonality and temperature seasonality were the most important whereas digital elevation model and precipitation during the wettest month were the least important. Callithrix flaviceps was most likely to occur in areas with tree canopy cover >80%, high precipitation seasonality and temperature seasonality between 21 and 23°C. From the future suitability prediction maps, the Caparaó National Park stands out as a likely key area for the preservation of the species. Furthermore, high climatic suitability but low landscape suitability suggests that habitat restoration in 'Serra das Torres' (South of the current distribution area) might be a useful strategy. However, creating ecological corridors on the west side of Caparaó would be necessary to improve connectivity. More surveys within and beyond the current geographical range are required to define more precisely the distribution of the species. Our results support the notion that seasonality is important for Callithrix flaviceps and that as a montane species, it prefers colder environments and higher altitudes. Within both climate change scenarios, Caparaó National Park was predicted to be highly suitable, with a high probability of presence.
RESUMEN
The Critically Endangered southern muriqui (Brachyteles arachnoides) and its sister taxon the northern muriqui (Brachyteles hypoxanthus) are endemic to the Atlantic Forest in Brazil. To date, our understanding of the distribution of the southern muriqui has restricted it to the states of Paraná, São Paulo, and Rio de Janeiro. The northern muriqui occurs in the states of Minas Gerais, Rio de Janeiro, Espírito Santo, and Bahia. Here, we describe the first record of the southern muriqui in Minas Gerais. A group of seven individuals, including one infant, was detected and photographed on a private property in the district of Monte Verde, municipality of Camanducaia, on the northwestern slope of the Serra da Mantiqueira. This location is 5.3 km from a population of southern muriquis (known since 1994) on the southeastern slope of the serra in São Paulo. This discovery highlights the importance of further surveys in the Serra da Mantiqueira in order to detect any new populations, provide data for a more accurate assessment of the conservation status of the two species-the delimitation of their distributions, the size and extent of isolation of their populations, and the threats they face.
Asunto(s)
Atelinae , Animales , Brasil , BosquesRESUMEN
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary: Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.
RESUMEN
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Asunto(s)
Evolución Biológica , Variación Genética , Primates , Animales , Humanos , Genoma , Tasa de Mutación , Filogenia , Primates/genética , Densidad de PoblaciónRESUMEN
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
Asunto(s)
Variación Genética , Primates , Animales , Humanos , Secuencia de Bases , Frecuencia de los Genes , Primates/genética , Secuenciación Completa del GenomaRESUMEN
Neotropical monkeys of the genera Cacajao, Chiropotes, and Pithecia (Pitheciidae) are considered to be highly arboreal, spending most of their time feeding and traveling in the upper canopy. Until now, the use of terrestrial substrates has not been analyzed in detail in this group. Here, we review the frequency of terrestrial use among pitheciin taxa to determine the ecological and social conditions that might lead to such behavior. We collated published and unpublished data from 14 taxa in the three genera. Data were gleaned from 53 published studies (including five on multiple pitheciin genera) and personal communications of unpublished data distributed across 31 localities. Terrestrial activity was reported in 61% of Pithecia field studies (11 of 18), in 34% of Chiropotes studies (10 of 29), and 36% of Cacajao studies (4 of 11). Within Pithecia, terrestrial behavior was more frequently reported in smaller species (e.g. P. pithecia) that are vertical clingers and leapers and make extensive use of the understory than in in the larger bodied canopy dwellers of the western Amazon (e.g. P. irrorata). Terrestrial behavior in Pithecia also occurred more frequently and lasted longer than in Cacajao or Chiropotes. An apparent association was found between flooded habitats and terrestrial activity and there is evidence of the development of a "local pattern" of terrestrial use in some populations. Seasonal fruit availability also may stimulate terrestrial behavior. Individuals also descended to the ground when visiting mineral licks, escaping predators, and responding to accidents such as a dropped infant. Overall, the results of this review emphasize that terrestrial use is rare among the pitheciins in general and is usually associated with the exploitation of specific resources or habitat types.
Asunto(s)
Conducta Animal , Ecosistema , Pitheciidae , Animales , Femenino , Masculino , Conducta Predatoria , Estaciones del Año , América del SurRESUMEN
The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species.
RESUMEN
Understanding the impact of zoonotic diseases on wild primate populations is important for assessing local extinction risks and for evaluating potential mitigating factors. Comparative data on demographic changes in two isolated populations of the northern muriqui (Brachyteles hypoxanthus) during a severe yellow fever outbreak in southeastern Brazil provide unique insights into the potential effects of this disease in this Critically Endangered species. From October 2016 to April 2017, the muriqui population at the Reserva Particular do Patrimônio Natural-Feliciano Miguel Abdala (Caratinga) lost 31 of its 324 members, or nearly 10%, whereas the population at the Reserva Particular do Patrimônio Natural-Mata do Sossego (Sossego) declined from 34 to 25 individuals, or 26%. Greater per-capita risks to muriquis in the Sossego population could be related to ecological and anthropogenic differences, including a wetter climate and an absence of sympatric howler monkeys (Alouatta guariba), which may have directly or indirectly buffered the Caratinga muriquis. Although we lack definitive confirmation that the muriqui population declines were caused by yellow fever, the timing and magnitude of the losses strongly implicate the disease. We highlight the risks of catastrophic population declines in small populations and emphasize the value of long-term demographic monitoring studies.
Asunto(s)
Atelinae , Especies en Peligro de Extinción , Enfermedades de los Monos/virología , Fiebre Amarilla/veterinaria , Animales , Brasil , Demografía , Femenino , Masculino , Dinámica Poblacional , Fiebre Amarilla/virologíaRESUMEN
Although the Atlantic Forest marmosets (Callithrix spp.) are among the best studied Neotropical primates, the Amazonian marmosets (Callibella humilis, Cebuella spp. and Mico spp.) are much less well-known. Even species diversity and distributions are yet to be properly determined because field data and materials currently available in scientific collections do not allow comprehensive taxonomic studies of Amazonian marmosets. From 2015 to 2018, we conducted 10 expeditions in key-areas within southern Amazonia where little or no information on marmosets was available. In one such region-the Tapajós-Jamanxim interfluve-we recorded marmosets with a distinctive pelage pigmentation pattern suggesting they could represent a new species. We tested this hypothesis using an integrative taxonomic framework that included phylogenomic data (ddRAD sequences), pelage pigmentation characters, and distribution records. We found that the marmosets of the northern Tapajós-Jamanxim interfluve have unique states in pelage pigmentation characters, form a clade (100% support) in our Bayesian and Maximum-Likelihood phylogenies, and occur in an area isolated from other taxa by rivers. The integration of these lines of evidence leads us to describe a new marmoset species in the genus Mico, named after the Munduruku Amerindians of the Tapajós-Jamanxim interfluve, southwest of Pará State, Brazil.