Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 52(8): 4676-4690, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567732

RESUMEN

SRSF1 governs splicing of over 1500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but not other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.


Asunto(s)
G-Cuádruplex , Unión Proteica , Factores de Empalme Serina-Arginina , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/química , Humanos , Sitios de Unión , Empalme del ARN , Motivo de Reconocimiento de ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mensajero/química , ARN/metabolismo , ARN/genética , ARN/química
2.
Biochemistry ; 61(24): 2922-2932, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36454680

RESUMEN

Ser/Arg-rich splicing factor 1 (SRSF1 or ASF/SF2) is the prototypical member of SR proteins. SRSF1 binds to exonic splicing enhancers, which prompts inclusion of corresponding exons in the mature mRNA. The RNA-binding domain of SRSF1 consists of tandem RNA-recognition motifs (RRM1 and RRM2) separated by a 30 amino acid long linker. In this study, we investigate roles of RRM1, RRM2, and the linker in RNA binding. We find that although both RRMs are crucial to RNA binding, RRM2 plays the dominant role. The linker mildly contributes to RNA binding and remains flexible in the RNA-bound state. Flexibility of the linker allows the RRM1-cognate motif to be either upstream or downstream of the RRM2-cognate motif. In addition, we find that the spacer length between the bipartite motifs varies from 0 to 10 nucleotides. Our binding assays reveal that SRSF1 prefers RNA sequences with shorter spacers and the RRM1-cognate motif being placed upstream. Restrained by nuclear magnetic resonance data, we simulate RNA-bound complexes and demonstrate how tandem RRMs bind to RNA of different spacer lengths and swapped bipartite motifs. We find that when the RRM1-cognate motif is placed downstream, either the RRM1/RRM2 linker needs to be more extended or RNA needs to form a U turn, which may reduce conformational entropy. Our study suggests that the RNA-binding specificity of SRSF1 is broader than traditionally recapitulated by consensus sequences of 7 to 8 nucleotides. Instead, centered on the RRM2-cognate motif, an RNA fragment encompassing 10-nucleotide upstream and downstream should be scrutinized.


Asunto(s)
Empalme del ARN , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , ARN/química , Nucleótidos/metabolismo , Factores de Empalme de ARN/metabolismo , Unión Proteica , Factores de Empalme Serina-Arginina/metabolismo
3.
J Biomol NMR ; 74(2-3): 119-124, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32056065

RESUMEN

Residual dipolar couplings (RDCs) provide valuable NMR parameters that can be used for structural calculation and verification. Measuring RDCs requires aligning macromolecules using one of various types of alignment media. Of different alignment media options, stretched or compressed polyacrylamide gels are advantageous due to their chemical stability. However, polyacrylamide interacts with proteins and significantly broadens NMR resonances. In this study, we found that the amide-containing compounds asparagine, glutamine and propionamide improve spectral quality of proteins in polyacrylamide gel without significantly reducing the magnitude of RDC values. Moreover, we showed that propionamide is an attractive additive that increases protein solubility without interfering with protein stability, ligand binding or NMR pulse width, suggesting its potential applications for our NMR methods.


Asunto(s)
Resinas Acrílicas/química , Resonancia Magnética Nuclear Biomolecular
4.
Protein Sci ; 33(8): e5117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39023093

RESUMEN

In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein. We unveil specific interactions: phosphorylated SRSF1 RS with U1-70K BAD1, and SRSF1 RRM1 with U1-70K RRM. The RS/BAD1 interaction plays a dominant role, whereas the interaction between the RRM domains further enhances the stability of the U1-70K/SRSF1 complex. The RRM interaction involves the C-terminal extension of U1-70K RRM and the conserved acid patches on SRSF1 RRM1 that is involved in SRSF1 phase separation. Our circular dichroism spectra reveal that BAD1 adapts an α-helical conformation and RS is intrinsically disordered. Intriguingly, BAD1 undergoes a conformation switch from α-helix to ß-strand and random coil upon RS binding. In addition to the regulatory mechanism via SRSF1 phosphorylation, the U1-70K/SRSF1 interaction is also regulated by U1-70K BAD1 phosphorylation. We find that U1-70K phosphorylation inhibits the U1-70K and SRSF1 interaction. Our structural findings are validated through in vitro splicing assays and in-cell saturated domain scanning using the CRISPR method, providing new insights into the intricate regulatory mechanisms of pre-mRNA splicing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1 , Factores de Empalme Serina-Arginina , Empalmosomas , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/química , Factores de Empalme Serina-Arginina/genética , Fosforilación , Empalmosomas/metabolismo , Empalmosomas/química , Humanos , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalme del ARN , Unión Proteica , Precursores del ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/química
5.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961538

RESUMEN

SRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.

6.
Elife ; 122023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862748

RESUMEN

Phase separation plays crucial roles in both sustaining cellular function and perpetuating disease states. Despite extensive studies, our understanding of this process is hindered by low solubility of phase-separating proteins. One example of this is found in SR and SR-related proteins. These proteins are characterized by domains rich in arginine and serine (RS domains), which are essential to alternative splicing and in vivo phase separation. However, they are also responsible for a low solubility that has made these proteins difficult to study for decades. Here, we solubilize the founding member of the SR family, SRSF1, by introducing a peptide mimicking RS repeats as a co-solute. We find that this RS-mimic peptide forms interactions similar to those of the protein's RS domain. Both interact with a combination of surface-exposed aromatic residues and acidic residues on SRSF1's RNA Recognition Motifs (RRMs) through electrostatic and cation-pi interactions. Analysis of RRM domains from human SR proteins indicates that these sites are conserved across the protein family. In addition to opening an avenue to previously unavailable proteins, our work provides insight into how SR proteins phase separate and participate in nuclear speckles.


Asunto(s)
Empalme Alternativo , Proteínas Nucleares , Humanos , Fosforilación , Electricidad Estática , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Arginina/metabolismo , Empalme del ARN , Serina/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA