Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 38: 25-48, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395166

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) represents a large multisubunit E3-ubiquitin ligase complex that controls the unidirectional progression through the cell cycle by the ubiquitination of specific target proteins, marking them for proteasomal destruction. Although the APC/C's role is largely conserved among eukaryotes, its subunit composition and target spectrum appear to be species specific. In this review, we focus on the plant APC/C complex, whose activity correlates with different developmental processes, including polyploidization and gametogenesis. After an introduction into proteolytic control by ubiquitination, we discuss the composition of the plant APC/C and the essential nature of its core subunits for plant development. Subsequently, we describe the APC/C activator subunits and interactors, most being plant specific. Finally, we provide a comprehensive list of confirmed and suspected plant APC/C target proteins. Identification of growth-related targets might offer opportunities to increase crop yield and resilience of plants to climate change by manipulating APC/C activity.


Asunto(s)
Anafase , Plantas , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
2.
Plant Cell ; 35(5): 1513-1531, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36747478

RESUMEN

Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fitocromo A/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ciclinas/metabolismo , Transducción de Señal/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
Plant Cell ; 34(11): 4348-4365, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35922895

RESUMEN

Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Activación Transcripcional , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo
4.
Plant J ; 116(5): 1370-1384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37616189

RESUMEN

The genomic integrity of every organism is endangered by various intrinsic and extrinsic stresses. To maintain genomic integrity, a sophisticated DNA damage response (DDR) network is activated rapidly after DNA damage. Notably, the fundamental DDR mechanisms are conserved in eukaryotes. However, knowledge about many regulatory aspects of the plant DDR is still limited. Important, yet little understood, regulatory factors of the DDR are the long non-coding RNAs (lncRNAs). In humans, 13 lncRNAs functioning in DDR have been characterized to date, whereas no such lncRNAs have been characterized in plants yet. By meta-analysis, we identified the putative long intergenic non-coding RNA induced by DNA damage (LINDA) that responds strongly to various DNA double-strand break-inducing treatments, but not to replication stress induced by mitomycin C. After DNA damage, LINDA is rapidly induced in an ATM- and SOG1-dependent manner. Intriguingly, the transcriptional response of LINDA to DNA damage is similar to that of its flanking hypothetical protein-encoding gene. Phylogenetic analysis of putative Brassicales and Malvales LINDA homologs indicates that LINDA lncRNAs originate from duplication of a flanking small protein-encoding gene followed by pseudogenization. We demonstrate that LINDA is not only needed for the regulation of this flanking gene but also fine-tuning of the DDR after the occurrence of DNA double-strand breaks. Moreover, Δlinda mutant root stem cells are unable to recover from DNA damage, most likely due to hyper-induced cell death.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Filogenia , Daño del ADN/genética , ADN/metabolismo , Reparación del ADN , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
New Phytol ; 241(2): 878-895, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38044565

RESUMEN

The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tylenchoidea/fisiología
6.
Plant Physiol ; 191(3): 1574-1595, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36423220

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) marks key cell cycle proteins for proteasomal breakdown, thereby ensuring unidirectional progression through the cell cycle. Its target recognition is temporally regulated by activating subunits, one of which is called CELL CYCLE SWITCH 52 A2 (CCS52A2). We sought to expand the knowledge on the APC/C by using the severe growth phenotypes of CCS52A2-deficient Arabidopsis (Arabidopsis thaliana) plants as a readout in a suppressor mutagenesis screen, resulting in the identification of the previously undescribed gene called PIKMIN1 (PKN1). PKN1 deficiency rescues the disorganized root stem cell phenotype of the ccs52a2-1 mutant, whereas an excess of PKN1 inhibits the growth of ccs52a2-1 plants, indicating the need for control of PKN1 abundance for proper development. Accordingly, the lack of PKN1 in a wild-type background negatively impacts cell division, while its systemic overexpression promotes proliferation. PKN1 shows a cell cycle phase-dependent accumulation pattern, localizing to microtubular structures, including the preprophase band, the mitotic spindle, and the phragmoplast. PKN1 is conserved throughout the plant kingdom, with its function in cell division being evolutionarily conserved in the liverwort Marchantia polymorpha. Our data thus demonstrate that PKN1 represents a novel, plant-specific protein with a role in cell division that is likely proteolytically controlled by the CCS52A2-activated APC/C.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , División Celular/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Arabidopsis/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Plantas/metabolismo , Mitosis
7.
Plant Cell Environ ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007549

RESUMEN

Aluminum-dependent stoppage of root growth requires the DNA damage response (DDR) pathway including the p53-like transcription factor SUPPRESSOR OF GAMMA RADIATION 1 (SOG1), which promotes terminal differentiation of the root tip in response to Al dependent cell death. Transcriptomic analyses identified Al-induced SOG1-regulated targets as candidate mediators of this growth arrest. Analysis of these factors either as loss-of-function mutants or by overexpression in the als3-1 background shows ERF115, which is a key transcription factor that in other scenarios is rate-limiting for damaged stem cell replenishment, instead participates in transition from an actively growing root to one that has terminally differentiated in response to Al toxicity. This is supported by a loss-of-function erf115 mutant raising the threshold of Al required to promote terminal differentiation of Al hypersensitive als3-1. Consistent with its key role in stoppage of root growth, a putative ERF115 barley ortholog is also upregulated following Al exposure, suggesting a conserved role for this ATR-dependent pathway in Al response. In contrast to other DNA damage agents, these results show that ERF115 and likely related family members are important determinants of terminal differentiation of the root tip following Al exposure and central outputs of the SOG1-mediated pathway in Al response.

8.
Plant Cell ; 33(8): 2662-2684, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34086963

RESUMEN

The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.


Asunto(s)
Reparación del ADN/genética , Endospermo/genética , Proteínas de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Sistemas CRISPR-Cas , Muerte Celular/genética , Roturas del ADN de Doble Cadena , Replicación del ADN/genética , Endospermo/citología , Inestabilidad Genómica , Mutación , Células Vegetales , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/citología , Zea mays/crecimiento & desarrollo
9.
Plant Cell ; 33(4): 1361-1380, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793856

RESUMEN

Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Fosfatos/metabolismo , Aluminio/farmacocinética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa de la Caseína II/genética , Péptidos y Proteínas de Señalización Intercelular , Fosfatos/farmacología , Fosforilación , Células Vegetales/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526654

RESUMEN

Gene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root. To this end, we isolated cells expressing the early mitosis cell cycle marker CYCLINB1;1-GFP from Arabidopsis root tips. Transcriptome analysis of these cells allowed identification of hundreds of genes whose expression is reduced or enriched in G2/M cells, including many not previously reported from cell suspension cultures. From this dataset, we identified SCL28, a transcription factor belonging to the GRAS family, whose messenger RNA accumulates to the highest levels in G2/M and is regulated by MYB3R transcription factors. Functional analysis indicates that SCL28 promotes progression through G2/M and modulates the selection of cell division planes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Mitosis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema/metabolismo , Mitosis/genética , Organogénesis , Factores de Transcripción/metabolismo , Transcriptoma/genética
11.
Plant J ; 109(3): 490-507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741364

RESUMEN

Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.


Asunto(s)
Absorción Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiología , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/fisiología , Daño del ADN/genética , Estrés Fisiológico/genética , Absorción Fisiológica/fisiología , Daño del ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estrés Fisiológico/fisiología , Factores de Transcripción
12.
New Phytol ; 237(5): 1652-1666, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451535

RESUMEN

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Endorreduplicación , Regulación de la Expresión Génica de las Plantas , Mitosis
13.
Plant Physiol ; 188(2): 898-918, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687312

RESUMEN

As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.


Asunto(s)
Arabidopsis/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica
14.
Plant Cell ; 32(9): 2979-2996, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690720

RESUMEN

The anaphase promoting complex/cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN20 (CDC20) and CELL CYCLE SWITCH52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis (Arabidopsis thaliana) CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the scored ccs52a2-1 phenotypes. Furthermore, whereas the CYCA3;4 protein is promptly broken down after prophase in wild-type plants, it remains present in later stages of mitosis in ccs52a2-1 mutant plants, marking it as a putative APC/CCCS52A2 substrate. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Ciclo Celular/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , División Celular , Metanosulfonato de Etilo/farmacología , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Meristema/genética , Mutación , Fosforilación , Células Vegetales/efectos de los fármacos , Hojas de la Planta/citología , Hojas de la Planta/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Tallos de la Planta/citología , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple
15.
Proc Natl Acad Sci U S A ; 117(28): 16667-16677, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601177

RESUMEN

Plants are known for their outstanding capacity to recover from various wounds and injuries. However, it remains largely unknown how plants sense diverse forms of injury and canalize existing developmental processes into the execution of a correct regenerative response. Auxin, a cardinal plant hormone with morphogen-like properties, has been previously implicated in the recovery from diverse types of wounding and organ loss. Here, through a combination of cellular imaging and in silico modeling, we demonstrate that vascular stem cell death obstructs the polar auxin flux, much alike rocks in a stream, and causes it to accumulate in the endodermis. This in turn grants the endodermal cells the capacity to undergo periclinal cell division to repopulate the vascular stem cell pool. Replenishment of the vasculature by the endodermis depends on the transcription factor ERF115, a wound-inducible regulator of stem cell division. Although not the primary inducer, auxin is required to maintain ERF115 expression. Conversely, ERF115 sensitizes cells to auxin by activating ARF5/MONOPTEROS, an auxin-responsive transcription factor involved in the global auxin response, tissue patterning, and organ formation. Together, the wound-induced auxin accumulation and ERF115 expression grant the endodermal cells stem cell activity. Our work provides a mechanistic model for wound-induced stem cell regeneration in which ERF115 acts as a wound-inducible stem cell organizer that interprets wound-induced auxin maxima.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Regeneración , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular , Autorrenovación de las Células , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/genética
16.
Plant J ; 107(1): 315-336, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33901335

RESUMEN

Coastal regions contribute an estimated 20% of annual gross primary production in the oceans, despite occupying only 0.03% of their surface area. Diatoms frequently dominate coastal sediments, where they experience large variations in light regime resulting from the interplay of diurnal and tidal cycles. Here, we report on an extensive diurnal transcript profiling experiment of the motile benthic diatom Seminavis robusta. Nearly 90% (23 328) of expressed protein-coding genes and 66.9% (1124) of expressed long intergenic non-coding RNAs showed significant expression oscillations and are predominantly phasing at night with a periodicity of 24 h. Phylostratigraphic analysis found that rhythmic genes are enriched in highly conserved genes, while diatom-specific genes are predominantly associated with midnight expression. Integration of genetic and physiological cell cycle markers with silica depletion data revealed potential new silica cell wall-associated gene families specific to diatoms. Additionally, we observed 1752 genes with a remarkable semidiurnal (12-h) periodicity, while the expansion of putative circadian transcription factors may reflect adaptations to cope with highly unpredictable external conditions. Taken together, our results provide new insights into the adaptations of diatoms to the benthic environment and serve as a valuable resource for the study of diurnal regulation in photosynthetic eukaryotes.


Asunto(s)
Adaptación Fisiológica , Ritmo Circadiano/genética , Diatomeas/citología , Diatomeas/fisiología , Expresión Génica , Ciclo Celular/genética , Pared Celular/genética , Pared Celular/metabolismo , Cloroplastos/genética , Enzimas/genética , Enzimas/metabolismo , Evolución Molecular , Mitocondrias/genética , Filogenia , Plancton/genética , Plancton/fisiología , ARN Largo no Codificante
17.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618100

RESUMEN

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Replicación del ADN , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myb/genética , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma de Planta , Inestabilidad Genómica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Exp Bot ; 72(19): 6789-6800, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459899

RESUMEN

Quiescent centre (QC) cells represent an integral part of the root stem cell niche. They typically display a low division frequency that has been reported to be controlled by hormone signaling and different regulators, including the ETHYLENE RESPONSE FACTOR 115 (ERF115) transcription factor and D-type cyclins. Here, we applied a three-dimensional (3D) imaging to visualize the Arabidopsis QC cell number, volume and division patterns, including visualization of anticlinal divisions that cannot be deduced from longitudinal 2D imaging. We found that 5-day-old seedlings possess on average eight QC cells which are organized in a monolayered disc. In a period of 7 d, half of the QC cells undergo anticlinal division in a largely invariant space. Ectopic expression of ERF115 and CYCLIN D1;1 (CYCD1;1) promote both anticlinal and periclinal QC cell divisions, the latter resulting in a dual-layered QC zone holding up to 2-fold more QC cells compared with the wild type. In contrast, application of cytokinin or ethylene results in an increase in the number of periclinal, but a decrease in anticlinal QC divisions, suggesting that they control the orientation of QC cell division. Our data illustrate the power of 3D visualization in revealing unexpected QC characteristics.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , División Celular , Meristema , Raíces de Plantas
19.
Plant Cell ; 30(10): 2330-2351, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30115738

RESUMEN

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/fisiología , Raíces de Plantas/genética , Poliploidía , Arabidopsis/citología , Arabidopsis/genética , Tamaño de la Célula , ADN de Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Vegetales/fisiología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Análisis Espacio-Temporal , Estrés Fisiológico/genética
20.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502313

RESUMEN

During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the polα-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , ADN Polimerasa I/genética , Resistencia a Medicamentos/genética , Hidroxiurea/farmacología , Mutación , Proteínas Serina-Treonina Quinasas/deficiencia , Antidrepanocíticos/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular , Daño del ADN , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA