Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 22(2): 92-110, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203932

RESUMEN

Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different 'microzones' during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.


Asunto(s)
Cerebelo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Animales , Humanos , Modelos Neurológicos
2.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
3.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574161

RESUMEN

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Asunto(s)
Cerebelo , Simulación por Computador , Condicionamiento Palpebral , Modelos Neurológicos , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Animales , Cerebelo/fisiología , Condicionamiento Palpebral/fisiología , Células de Purkinje/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Sinapsis/fisiología , Biología Computacional , Ratones , Corteza Cerebelosa/fisiología
4.
J Physiol ; 602(1): 153-181, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987552

RESUMEN

The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.


Asunto(s)
Cerebelo , Vibrisas , Ratones , Animales , Vibrisas/fisiología , Fenómenos Biomecánicos , Cerebelo/fisiología , Células de Purkinje/fisiología , Corteza Cerebelosa
5.
Neurobiol Dis ; 192: 106422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286390

RESUMEN

Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Humanos , Ratones , Animales , Células de Purkinje/metabolismo , Ataxia de la Marcha/metabolismo , Ataxia de la Marcha/patología , Ratones Transgénicos , Ataxias Espinocerebelosas/genética , Neuronas/patología , Cerebelo/patología , Modelos Animales de Enfermedad
6.
Nature ; 563(7729): 113-116, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333626

RESUMEN

Persistent and ramping neural activity in the frontal cortex anticipates specific movements1-6. Preparatory activity is distributed across several brain regions7,8, but it is unclear which brain areas are involved and how this activity is mediated by multi-regional interactions. The cerebellum is thought to be primarily involved in the short-timescale control of movement9-12; however, roles for this structure in cognitive processes have also been proposed13-16. In humans, cerebellar damage can cause defects in planning and working memory13. Here we show that persistent representation of information in the frontal cortex during motor planning is dependent on the cerebellum. Mice performed a sensory discrimination task in which they used short-term memory to plan a future directional movement. A transient perturbation in the medial deep cerebellar nucleus (fastigial nucleus) disrupted subsequent correct responses without hampering movement execution. Preparatory activity was observed in both the frontal cortex and the cerebellar nuclei, seconds before the onset of movement. The silencing of frontal cortex activity abolished preparatory activity in the cerebellar nuclei, and fastigial activity was necessary to maintain cortical preparatory activity. Fastigial output selectively targeted the behaviourally relevant part of the frontal cortex through the thalamus, thus closing a cortico-cerebellar loop. Our results support the view that persistent neural dynamics during motor planning is maintained by neural circuits that span multiple brain regions17, and that cerebellar computations extend beyond online motor control13-15,18.


Asunto(s)
Cerebelo/fisiología , Lóbulo Frontal/fisiología , Desempeño Psicomotor/fisiología , Animales , Cerebelo/citología , Señales (Psicología) , Femenino , Lóbulo Frontal/citología , Masculino , Ratones , Movimiento/fisiología , Vías Nerviosas , Neuronas/fisiología , Tálamo/citología , Tálamo/fisiología
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443203

RESUMEN

Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.


Asunto(s)
Corteza Motora/metabolismo , Células de Purkinje/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Corteza Cerebelosa , Cerebelo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Optogenética , Corteza Sensoriomotora , Núcleos Talámicos Ventrales , Vibrisas/fisiología
8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34507990

RESUMEN

Long-term synaptic plasticity is believed to be the cellular substrate of learning and memory. Synaptic plasticity rules are defined by the specific complement of receptors at the synapse and the associated downstream signaling mechanisms. In young rodents, at the cerebellar synapse between granule cells (GC) and Purkinje cells (PC), bidirectional plasticity is shaped by the balance between transcellular nitric oxide (NO) driven by presynaptic N-methyl-D-aspartate receptor (NMDAR) activation and postsynaptic calcium dynamics. However, the role and the location of NMDAR activation in these pathways is still debated in mature animals. Here, we show in adult rodents that NMDARs are present and functional in presynaptic terminals where their activation triggers NO signaling. In addition, we find that selective genetic deletion of presynaptic, but not postsynaptic, NMDARs prevents synaptic plasticity at parallel fiber-PC (PF-PC) synapses. Consistent with this finding, the selective deletion of GC NMDARs affects adaptation of the vestibulo-ocular reflex. Thus, NMDARs presynaptic to PCs are required for bidirectional synaptic plasticity and cerebellar motor learning.


Asunto(s)
Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Encéfalo/fisiología , Cerebelo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/metabolismo , Terminales Presinápticos/fisiología , Células de Purkinje/metabolismo , Sinapsis/metabolismo
9.
J Physiol ; 601(23): 5317-5340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864560

RESUMEN

In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), synchronous oscillating retinal ganglion cells (RGCs) lead to oscillatory eye movements, i.e. nystagmus. Given the specific expression of mGluR6 and Cav 1.4 in the photoreceptor to bipolar cell synapses, as well as their clinical association with CSNB, we hypothesize that Grm6nob3 and Cav 1.4-KO mutants show, like the Nyxnob mouse, oscillations in both their RGC activity and eye movements. Using multi-electrode array recordings of RGCs and measurements of the eye movements, we demonstrate that Grm6nob3 and Cav 1.4-KO mice also show oscillations of their RGCs as well as a nystagmus. Interestingly, the preferred frequencies of RGC activity as well as the eye movement oscillations of the Grm6nob3 , Cav 1.4-KO and Nyxnob mice differ among mutants, but the neuronal activity and eye movement behaviour within a strain remain aligned in the same frequency domain. Model simulations indicate that mutations affecting the photoreceptor-bipolar cell synapse can form a common cause of the nystagmus of CSNB by driving oscillations in RGCs via AII amacrine cells. KEY POINTS: In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), their oscillatory eye movements (i.e. nystagmus) are caused by synchronous oscillating retinal ganglion cells. Here we show that the same mechanism applies for two other CSNB mouse models - Grm6nob3 and Cav 1.4-KO mice. We propose that the retinal ganglion cell oscillations originate in the AII amacrine cells. Model simulations show that by only changing the input to ON-bipolar cells, all phenotypical differences between the various genetic mouse models can be reproduced.


Asunto(s)
Miopía , Ceguera Nocturna , Nistagmo Congénito , Ratones , Animales , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Miopía/genética , Miopía/metabolismo , Células Ganglionares de la Retina/fisiología , Mutación , Electrorretinografía
10.
PLoS Biol ; 18(1): e3000596, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905212

RESUMEN

Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.


Asunto(s)
Potenciales de Acción/genética , Aprendizaje/fisiología , Memoria/fisiología , Actividad Motora/fisiología , Células de Purkinje/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Animales , Cerebelo/citología , Cerebelo/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/fisiología , Reflejo Vestibuloocular , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
11.
Cell Mol Life Sci ; 79(4): 197, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305155

RESUMEN

Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.


Asunto(s)
Núcleos Cerebelosos , Epilepsia Tipo Ausencia , Potenciales de Acción/fisiología , Animales , Epilepsia Tipo Ausencia/genética , Ratones , Convulsiones/genética , Transducción de Señal
12.
Ophthalmic Physiol Opt ; 43(3): 494-504, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882953

RESUMEN

PURPOSE: To study the effectiveness of high-dose atropine for reducing eye growth in Mendelian myopia in children and mice. METHODS: We studied the effect of high-dose atropine in children with progressive myopia with and without a monogenetic cause. Children were matched for age and axial length (AL) in their first year of treatment. We considered annual AL progression rate as the outcome and compared rates with percentile charts of an untreated general population. We treated C57BL/6J mice featuring the myopic phenotype of Donnai-Barrow syndrome by selective inactivation of Lrp2 knock out (KO) and control mice (CTRL) daily with 1% atropine in the left eye and saline in the right eye, from postnatal days 30-56. Ocular biometry was measured using spectral-domain optical coherence tomography. Retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. RESULTS: Children with a Mendelian form of myopia had average baseline spherical equivalent (SE) -7.6 ± 2.5D and AL 25.8 ± 0.3 mm; children with non-Mendelian myopia had average SE -7.3 ± 2.9 D and AL 25.6 ± 0.9 mm. During atropine treatment, the annual AL progression rate was 0.37 ± 0.08 and 0.39 ± 0.05 mm in the Mendelian myopes and non-Mendelian myopes, respectively. Compared with progression rates of untreated general population (0.47 mm/year), atropine reduced AL progression with 27% in Mendelian myopes and 23% in non-Mendelian myopes. Atropine significantly reduced AL growth in both KO and CTRL mice (male, KO: -40 ± 15; CTRL: -42 ± 10; female, KO: -53 ± 15; CTRL: -62 ± 3 µm). The DA and DOPAC levels 2 and 24 h after atropine treatment were slightly, albeit non-significantly, elevated. CONCLUSIONS: High-dose atropine had the same effect on AL in high myopic children with and without a known monogenetic cause. In mice featuring a severe form of Mendelian myopia, atropine reduced AL progression. This suggests that atropine can reduce myopia progression even in the presence of a strong monogenic driver.


Asunto(s)
Atropina , Miopía Degenerativa , Humanos , Masculino , Femenino , Animales , Ratones , Ácido 3,4-Dihidroxifenilacético , Ratones Endogámicos C57BL , Atropina/farmacología , Refracción Ocular , Retina , Progresión de la Enfermedad , Soluciones Oftálmicas
13.
Proc Natl Acad Sci U S A ; 117(29): 17348-17358, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636261

RESUMEN

The cerebellar posterior vermis generates an estimation of our motion (translation) and orientation (tilt) in space using cues originating from semicircular canals and otolith organs. Theoretical work has laid out the basic computations necessary for this signal transformation, but details on the cellular loci and mechanisms responsible are lacking. Using a multicomponent modeling approach, we show that canal and otolith information are spatially and temporally matched in mouse posterior vermis Purkinje cells and that Purkinje cell responses combine translation and tilt information. Purkinje cell-specific inhibition of protein kinase C decreased and phase-shifted the translation component of Purkinje cell responses, but did not affect the tilt component. Our findings suggest that translation and tilt signals reach Purkinje cells via separate information pathways and that protein kinase C-dependent mechanisms regulate translation information processing in cerebellar cortex output neurons.


Asunto(s)
Vermis Cerebeloso/fisiología , Membrana Otolítica/fisiología , Proteína Quinasa C/metabolismo , Células de Purkinje/metabolismo , Animales , Corteza Cerebelosa , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Plasticidad Neuronal
14.
Proc Natl Acad Sci U S A ; 117(12): 6855-6865, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152108

RESUMEN

Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.


Asunto(s)
Parpadeo/fisiología , Núcleos Cerebelosos/fisiología , Condicionamiento Palpebral/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Matriz Extracelular , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL
15.
J Neurosci ; 41(26): 5579-5594, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34021041

RESUMEN

Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.


Asunto(s)
Calcineurina/metabolismo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Animales , Movimientos Oculares/fisiología , Ratones , Densidad Postsináptica/metabolismo
16.
J Neurosci Res ; 100(2): 620-637, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850425

RESUMEN

Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro-cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono- and disynaptic projections through the MDJ, this work establishes that cerebro-cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.


Asunto(s)
Cerebelo , Núcleo Olivar , Animales , Núcleos Cerebelosos/fisiología , Cerebelo/fisiología , Bulbo Raquídeo , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología
17.
Cerebellum ; 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575348

RESUMEN

The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.

18.
PLoS Biol ; 17(9): e3000174, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513577

RESUMEN

Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.


Asunto(s)
Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Nistagmo Congénito/etiología , Células Ganglionares de la Retina/fisiología , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Ratones Noqueados
19.
J Neurosci ; 40(1): 159-170, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31694963

RESUMEN

The cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated. Here, we investigate the influence of the cerebellar cortical output, the Purkinje cells, on identified cerebellar nuclei neurons in vivo in male mice. Using transgenic mice expressing Channelrhodopsin2 specifically in Purkinje cells and tetrode recordings in the medial nucleus, we identified two main groups of neurons based on the waveform of their action potentials. These two groups of neurons coincide with glutamatergic and GABAergic neurons identified by optotagging after Chrimson expression in VGLUT2-cre and GAD-cre mice, respectively. The glutamatergic-like neurons fire at high rate and respond to both rate and timing of Purkinje cell population inputs, whereas GABAergic-like neurons only respond to the mean population firing rate of Purkinje cells at high frequencies. Moreover, synchronous activation of Purkinje cells can entrain the glutamatergic-like, but not the GABAergic-like, cells over a wide range of frequencies. Our results suggest that the downstream effect of synchronous and rhythmic Purkinje cell discharges depends on the type of cerebellar nuclei neurons targeted.SIGNIFICANCE STATEMENT Motor coordination and skilled movements are driven by the permanent discharge of neurons from the cerebellar nuclei that communicate cerebellar computation to other brain areas. Here, we set out to study how specific subtypes of cerebellar nuclear neurons of the medial nucleus are controlled by Purkinje cells, the sole output of the cerebellar cortex. We could isolate different subtypes of nuclear cell that differentially encode Purkinje cell inhibition. Purkinje cell stimulation entrains glutamatergic projection cells at their firing frequency, whereas GABAergic neurons are only inhibited. These differential coding strategies may favor temporal precision of cerebellar excitatory outputs associated with specific features of movement control while setting the global level of cerebellar activity through inhibition via rate coding mechanisms.


Asunto(s)
Núcleos Cerebelosos/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Células de Purkinje/fisiología , Potenciales de Acción , Vías Aferentes/fisiología , Anestesia , Animales , Núcleos Cerebelosos/citología , Channelrhodopsins/fisiología , Genes Reporteros , Glutamato Descarboxilasa/genética , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora , Neuronas/fisiología , Optogenética , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Vigilia
20.
J Physiol ; 599(7): 2055-2073, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492688

RESUMEN

KEY POINTS: Ventrolateral thalamus (VL) integrates information from cerebellar nuclei and motor cortical layer VI. Inputs from the cerebellar nuclei evoke large-amplitude responses that depress upon repetitive stimulation while layer VI inputs from motor cortex induce small-amplitude facilitating responses. We report that the spiking of VL neurons can be determined by the thalamic membrane potential, the frequency of cerebellar inputs and the duration of pauses after cerebellar high frequency stimulation. Inputs from motor cortical layer VI shift the VL membrane potential and modulate the VL spike output in response to cerebellar stimulation.  These results help us to decipher how the cerebellar output is integrated in VL and modulated by motor cortical input. ABSTRACT: Orchestrating complex movements requires well-timed interaction of cerebellar, thalamic and cerebral structures, but the mechanisms underlying the integration of cerebro-cerebellar information in motor thalamus remain largely unknown. Here we investigated how excitatory inputs from cerebellar nuclei (CN) and primary motor cortex layer VI (M1-L6) neurons may regulate the activity of neurons in the mouse ventrolateral (VL) thalamus. Using dual-optical stimulation of the CN and M1-L6 axons and in vitro whole-cell recordings of the responses in VL neurons, we studied the individual responses as well as the effects of combined CN and M1-L6 stimulation. Whereas CN inputs evoked large-amplitude responses that were depressed upon repetitive stimulation, M1-L6 inputs elicited small-amplitude responses that were facilitated upon repetitive stimulation. Moreover, pauses in CN stimuli could directly affect VL spiking probability, an effect that was modulated by VL membrane potential. When CN and M1-L6 pathways were co-activated, motor cortical afferents increased the thalamic spike output in response to cerebellar stimulation, indicating that CN and M1 synergistically, yet differentially, control the membrane potential and spiking pattern of VL neurons.


Asunto(s)
Corteza Motora , Tálamo , Animales , Núcleos Cerebelosos , Cerebelo , Estimulación Eléctrica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA