Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Explor Res Hypothesis Med ; 7(3): 165-168, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247021

RESUMEN

The recent histologic subtyping of lung adenocarcinoma has demonstrated the prognostic values of histologic patterns in this malignancy. However, the histological features of lung squamous cell carcinoma (SCC) are much less established. This short review discusses several promising histological prognostic markers for SCC, including tumor budding, tumor cell nesting, and the spreading of tumors through air spaces. Wherever appropriate, the biological significance of these morphological features was also discussed. The investigators consider that histological prognostic markers are highly valuable in understanding the cancer biology of SCC, and in guiding clinical treatment. However, larger clinical cohorts are needed to better establish the prognostic values of the aforementioned histological markers. The application of modern technologies, including machine-learning, would make the histological analysis accurate and reproducible.

2.
Sci Rep ; 12(1): 5729, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388102

RESUMEN

The Coronavirus disease 2019 (COVID-19) pandemic-caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)- has posed a global threat and presented with it a multitude of economic and public-health challenges. Establishing a reliable means of readily available, rapid diagnostic testing is of paramount importance in halting the spread of COVID-19, as governments continue to ease lockdown restrictions. The current standard for laboratory testing utilizes reverse transcription quantitative polymerase chain reaction (RT-qPCR); however, this method presents clear limitations in requiring a longer run-time as well as reduced on-site testing capability. Therefore, we investigated the feasibility of a reverse transcription looped-mediated isothermal amplification (RT-LAMP)-based model of rapid COVID-19 diagnostic testing which allows for less invasive sample collection, named SaliVISION. This novel, two-step, RT-LAMP assay utilizes a customized multiplex primer set specifically targeting SARS-CoV-2 and a visual report system that is ready to interpret within 40 min from the start of sample processing and does not require a BSL-2 level testing environment or special laboratory equipment. When compared to the SalivaDirect and Thermo Fisher Scientific TaqPath RT-qPCR testing platforms, the respective sensitivities of the SaliVISION assay are 94.29% and 98.28% while assay specificity was 100% when compared to either testing platform. Our data illustrate a robust, rapid diagnostic assay in our novel RT-LAMP test design, with potential for greater testing throughput than is currently available through laboratory testing and increased on-site testing capability.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Control de Enfermedades Transmisibles , Pruebas Diagnósticas de Rutina , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Saliva/química , Sensibilidad y Especificidad
3.
Diagnostics (Basel) ; 12(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454006

RESUMEN

Through a multitude of studies, the gut microbiota has been recognized as a significant influencer of both homeostasis and pathophysiology. Certain microbial taxa can even affect treatments such as cancer immunotherapies, including the immune checkpoint blockade. These taxa can impact such processes both individually as well as collectively through mechanisms from quorum sensing to metabolite production. Due to this overarching presence of the gut microbiota in many physiological processes distal to the GI tract, we hypothesized that mice bearing tumors at extraintestinal sites would display a distinct intestinal microbial signature from non-tumor-bearing mice, and that such a signature would involve taxa that collectively shift with tumor presence. Microbial OTUs were determined from 16S rRNA genes isolated from the fecal samples of C57BL/6 mice challenged with either B16-F10 melanoma cells or PBS control and analyzed using QIIME. Relative proportions of bacteria were determined for each mouse and, using machine-learning approaches, significantly altered taxa and co-occurrence patterns between tumor- and non-tumor-bearing mice were found. Mice with a tumor had elevated proportions of Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae, as well as significant information gains and ReliefF weights for Bacteroidales.f__S24.7, Ruminococcaceae, Clostridiales, and Erysipelotrichaceae. Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales were also implicated through shifting co-occurrences and PCA values. Using these seven taxa as a melanoma signature, a neural network reached an 80% tumor detection accuracy in a 10-fold stratified random sampling validation. These results indicated gut microbial proportions as a biosensor for tumor detection, and that shifting co-occurrences could be used to reveal relevant taxa.

4.
Am J Cancer Res ; 11(11): 5644-5658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34873485

RESUMEN

Esophageal carcinoma (EC) is one of the most pervasive cancers in the world, with upwards of 500,000 new diagnoses, annually. Despite its prominence, advancements in the detection and treatment of EC have been marginal over the past 30 years and the survival rate continues to stay below 20%. This is due to the uncommonly heterogeneous presentation of EC which presents unprecedented challenges in improving patient survival and quality of care. However, distinct epigenetic alterations to the DNA methylome may provide an avenue to drastically improve the detection and treatment of EC. Specifically, the creation of novel biomarker panels that consist of EC-specific methylation markers have shown promise as a potential alternative to the more invasive, contemporary diagnostic methods. Additionally, growing insight into the biological and clinical properties of EC-specific methylation patterns have opened a window of opportunity for enhanced treatment; of growing interest is the application of "DNMT inhibitors" - a class of drugs which inhibit excessive methylation and have been shown to re-sensitize chemoresistant tumors. Here we provide a comprehensive review of the current advancements in EC DNA methylation to underscore a potential approach to its detection and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA