Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Genes Dev ; 37(9-10): 418-431, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257918

RESUMEN

Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential for mammalian embryo development. How certain maternal mRNAs are selected for translation instead of degradation and how this burst of translation affects zygotic genome activation remain unknown. Using gene-edited mice, we document that the oocyte-specific eukaryotic translation initiation factor 4E family member 1b (eIF4E1b) is the regulator of maternal mRNA expression that ensures subsequent reprogramming of the zygotic genome. In oocytes, eIF4E1b binds to transcripts encoding translation machinery proteins, chromatin remodelers, and reprogramming factors to promote their translation in zygotes and protect them from degradation. The protein products are thought to establish an open chromatin landscape in one-cell zygotes to enable transcription of genes required for cleavage stage development. Our results define a program for rapid resetting of the zygotic epigenome that is regulated by maternal mRNA expression and provide new insights into the mammalian maternal-to-zygotic transition.


Asunto(s)
ARN Mensajero Almacenado , Cigoto , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Oocitos , Biosíntesis de Proteínas , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Cigoto/metabolismo
2.
Trends Genet ; 40(3): 238-249, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262796

RESUMEN

Maternal mRNAs accumulate during egg growth and must be judiciously degraded or translated to ensure successful development of mammalian embryos. In this review we integrate recent investigations into pathways controlling rapid degradation of maternal mRNAs during the maternal-to-zygotic transition. Degradation is not indiscriminate, and some mRNAs are selectively protected and rapidly translated after fertilization for reprogramming the zygotic genome during early embryogenesis. Oocyte specific cofactors and pathways have been illustrated to control different futures of maternal mRNAs. We discuss mechanisms that control the fate of maternal mRNAs during late oogenesis and after fertilization. Issues to be resolved in current maternal mRNA research are described, and future research directions are proposed.


Asunto(s)
Desarrollo Embrionario , ARN Mensajero Almacenado , Animales , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Desarrollo Embrionario/genética , Oocitos , Oogénesis/genética , Cigoto , Regulación del Desarrollo de la Expresión Génica/genética , Mamíferos/genética
3.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953252

RESUMEN

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Asunto(s)
Fertilidad , Ratones Noqueados , Espermatogénesis , Espermatogonias , Testículo , Animales , Masculino , Espermatogénesis/genética , Espermatogénesis/fisiología , Ratones , Fertilidad/genética , Testículo/metabolismo , Espermatogonias/metabolismo , Espermatogonias/citología , Células de Sertoli/metabolismo , Diferenciación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Estabilidad del ARN/genética , Infertilidad Masculina/genética
4.
Nucleic Acids Res ; 51(7): 3078-3093, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36727488

RESUMEN

During oocyte development in mice, transcripts accumulate in the growth phase and are subsequently degraded during maturation. At the transition point between growth and maturation, oocytes have an intact nucleus or germinal vesicle (GV), and terminal uridylation labels RNA for degradation in meiosis I. By profiling the transcriptome using single-oocyte long-read PacBio RNA sequencing, we document that a small cohort of mRNAs are polyadenylated after terminal uridylation in GV oocytes [designated uridylated-poly(A) RNA]. Because DIS3L2 ribonuclease is known to degrade uridylated transcripts, we established oocyte-specific Dis3l2 knockout mice (Dis3l2cKO). Upon DIS3L2 depletion, uridylated-poly(A) RNAs remain intact which increases their abundance, and they predominate in the transcriptome of Dis3l2cKO oocytes. The abundance of uridylated-poly(A) RNA in Dis3l2cKO oocytes arises not only from insufficient degradation, but also from the stabilizing effect of subsequent polyadenylation. Uridylated-poly(A) RNAs have shorter poly(A) tails and their translation activity decreases in Dis3l2cKO oocytes. Almost all Dis3l2cKO oocytes arrest at the GV stage, and female mice are infertile. Our study demonstrates multiple fates for RNA after terminal uridylation and highlights the role of DIS3L2 ribonuclease in safeguarding the transcriptome and ensuring female fertility.


Asunto(s)
Exorribonucleasas , Fertilidad , Animales , Femenino , Ratones , Oocitos/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Exorribonucleasas/metabolismo
5.
PLoS Genet ; 17(4): e1009485, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33831001

RESUMEN

piRNAs are small non-coding RNAs required to maintain genome integrity and preserve RNA homeostasis during male gametogenesis. In murine adult testes, the highest levels of piRNAs are present in the pachytene stage of meiosis, but their mode of action and function remain incompletely understood. We previously reported that BTBD18 binds to 50 pachytene piRNA-producing loci. Here we show that spermatozoa in gene-edited mice lacking a BTBD18 targeted pachytene piRNA cluster on Chr18 have severe sperm head dysmorphology, poor motility, impaired acrosome exocytosis, zona pellucida penetration and are sterile. The mutant phenotype arises from aberrant formation of proacrosomal vesicles, distortion of the trans-Golgi network, and up-regulation of GOLGA2 transcripts and protein associated with acrosome dysgenesis. Collectively, our findings reveal central role of pachytene piRNAs in controlling spermiogenesis and male fertility.


Asunto(s)
Infertilidad Masculina/genética , ARN Interferente Pequeño/genética , Espermatogénesis/genética , Espermatozoides/patología , Acrosoma/patología , Animales , Cromosomas/genética , Humanos , Infertilidad Masculina/patología , Masculino , Meiosis/genética , Ratones , Fase Paquiteno/genética , Espermátides/crecimiento & desarrollo , Espermátides/patología , Testículo/crecimiento & desarrollo , Testículo/patología
6.
Nucleic Acids Res ; 48(10): 5349-5365, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32313933

RESUMEN

Growing mammalian oocytes accumulate substantial amounts of RNA, most of which is degraded during subsequent meiotic maturation. The growth-to-maturation transition begins with germinal vesicle or nuclear envelope breakdown (GVBD) and is critical for oocyte quality and early development. The molecular machinery responsible for the oocyte transcriptome transition remains unclear. Here, we report that an exosome-associated RNase, EXOSC10, sculpts the transcriptome to facilitate the growth-to-maturation transition of mouse oocytes. We establish an oocyte-specific conditional knockout of Exosc10 in mice using CRISPR/Cas9 which results in female subfertility due to delayed GVBD. By performing multiple single oocyte RNA-seq, we document dysregulation of several types of RNA, and the mRNAs that encode proteins important for endomembrane trafficking and meiotic cell cycle. As expected, EXOSC10-depleted oocytes have impaired endomembrane components including endosomes, lysosomes, endoplasmic reticulum and Golgi. In addition, CDK1 fails to activate, possibly due to persistent WEE1 activity, which blocks lamina phosphorylation and disassembly. Moreover, we identified rRNA processing defects that cause higher percentage of developmentally incompetent oocytes after EXOSC10 depletion. Collectively, we propose that EXOSC10 promotes normal growth-to-maturation transition in mouse oocytes by sculpting the transcriptome to degrade RNAs encoding growth-phase factors and, thus, support the maturation phase of oogenesis.


Asunto(s)
Exorribonucleasas/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/fisiología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis , Transcriptoma , Animales , Proteína Quinasa CDC2/metabolismo , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Femenino , Infertilidad Femenina/genética , Membranas Intracelulares/metabolismo , Ratones , Lámina Nuclear/metabolismo , Poli A , ARN/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , RNA-Seq
7.
Nucleic Acids Res ; 48(7): 3525-3541, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32086523

RESUMEN

Germ-cell transcription factors control gene networks that regulate oocyte differentiation and primordial follicle formation during early, postnatal mouse oogenesis. Taking advantage of gene-edited mice lacking transcription factors expressed in female germ cells, we analyzed global gene expression profiles in perinatal ovaries from wildtype, FiglaNull, Lhx8Null and Sohlh1Null mice. Figla deficiency dysregulates expression of meiosis-related genes (e.g. Sycp3, Rad51, Ybx2) and a variety of genes (e.g. Nobox, Lhx8, Taf4b, Sohlh1, Sohlh2, Gdf9) associated with oocyte growth and differentiation. The absence of FIGLA significantly impedes meiotic progression, causes DNA damage and results in oocyte apoptosis. Moreover, we find that FIGLA and other transcriptional regulator proteins (e.g. NOBOX, LHX8, SOHLH1, SOHLH2) are co-expressed in the same subset of germ cells in perinatal ovaries and Figla ablation dramatically disrupts KIT, NOBOX, LHX8, SOHLH1 and SOHLH2 abundance. In addition, not only do FIGLA, LHX8 and SOHLH1 cross-regulate each other, they also cooperate by direct interaction with each during early oocyte development and share downstream gene targets. Thus, our findings substantiate a major role for FIGLA, LHX8 and SOHLH1 as multifunctional regulators of networks necessary for oocyte maintenance and differentiation during early folliculogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes Reguladoras de Genes , Proteínas con Homeodominio LIM/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Factores de Transcripción/metabolismo , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/genética , Daño del ADN , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas con Homeodominio LIM/genética , Meiosis/genética , Ratones , Oocitos/citología , Ovario/metabolismo , Factores de Transcripción/genética
8.
Development ; 144(3): 519-528, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993980

RESUMEN

During development from oocyte to embryo, genetic programs in mouse germ cells are reshaped by chromatin remodeling to orchestrate the onset of development. Epigenetic modifications of specific amino acid residues of core histones and their isoforms can dramatically alter activation and suppression of gene expression. H3.3 is a histone H3 variant that plays essential roles in mouse oocytes and early embryos, but the functional role of individual amino acid residues has been unclear because of technical hurdles. Here, we describe two strategies that successfully investigated the functions of three individual H3.3 residues in oogenesis, cleavage-stage embryogenesis and early development. We first generated genetic mosaic ovaries and blastocysts with stochastic expression of wild-type or mutant H3.3 alleles and showed dominant negative effects of H3.3R26 and H3.3K27 in modulating oogenesis and partitioning cells to the inner cell mass of the early embryo. Time-lapse imaging assays also revealed the essential roles of H3.3K56 in efficient H2B incorporation and paternal pronuclei formation. Application of these strategies can be extended to investigate roles of additional H3.3 residues and has implications for use in other developmental systems.


Asunto(s)
Blastocisto/metabolismo , Histonas/metabolismo , Oocitos/metabolismo , Animales , Blastocisto/citología , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Blastómeros/citología , Blastómeros/metabolismo , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Histonas/química , Histonas/genética , Masculino , Ratones , Ratones Transgénicos , Mosaicismo , Oogénesis , Imagen de Lapso de Tiempo , Cigoto/citología , Cigoto/metabolismo
9.
PLoS Genet ; 13(1): e1006580, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114310

RESUMEN

Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl) exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ) prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Fertilización , Metaloproteasas/metabolismo , Oocitos/metabolismo , Señales de Clasificación de Proteína , Glicoproteínas de la Zona Pelúcida/metabolismo , Animales , Femenino , Metaloproteasas/química , Metaloproteasas/genética , Ratones , Transporte de Proteínas , Proteolisis
10.
N Engl J Med ; 374(3): 279-80, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26789878

RESUMEN

The hallmark of successful human reproduction is the fusion between a haploid spermatozoon and a metaphase II oocyte. The generation of such an oocyte involves a series of steps whereby germinal-vesicle oocytes (in which the nuclei are intact) at prophase I are stimulated to resume meiosis and mature to metaphase II, a sequence of events that prepares the oocyte for fertilization. Meiosis in mammalian females entails two reductive divisions of DNA to produce ovulated oocytes that can be fertilized in the oviduct (Figure 1). In the first meiotic division, replicated chromosomes condense and attach to kinetochores through their centromeres to . . .


Asunto(s)
Infertilidad Femenina/genética , Meiosis/genética , Microtúbulos/patología , Mutación , Oocitos/fisiología , Huso Acromático/fisiología , Tubulina (Proteína)/genética , Animales , Femenino , Humanos
11.
J Cell Sci ; 126(Pt 3): 715-21, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264738

RESUMEN

Prior to ovulation, mammalian oocytes complete their first meiotic division and arrest at metaphase II. During this marked asymmetric cell division, the meiotic spindle moves dramatically from the center of the oocyte to the cortex to facilitate segregation of half of its chromosomal content into the diminutive first polar body. Recent investigations have documented crucial roles for filamentous actin (F-actin) in meiotic spindle translocation. However, the identity of the upstream regulators responsible for these carefully orchestrated movements has remained elusive. Utilizing fluorescently tagged probes and time-lapse confocal microscopy, we document that phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is constitutively synthesized with spatial and temporal dynamics similar to that of F-actin and Formin 2 (Fmn2). Blockage of PtdIns(3,4,5)P3 synthesis by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), disrupts cytoplasmic F-actin organization and meiotic spindle migration to the cortex. F-actin nucleator Fmn2 and Rho GTPase Cdc42 play roles in mediating the effect of PtdIns(3,4,5)P3 on F-actin assembly. Moreover, the spatial and temporal dynamics of PtdIns(3,4,5)P3 is impaired by depletion of MATER or Filia, two oocyte proteins encoded by maternal effect genes. Thus, PtdIns(3,4,5)P3 is synthesized during meiotic maturation and acts upstream of Cdc42 and Fmn2, but downstream of MATER/Filia proteins to regulate the F-actin organization and spindle translocation to the cortex during mouse oocyte meiosis.


Asunto(s)
Oocitos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Huso Acromático/metabolismo , Actinas/metabolismo , Animales , Antígenos/metabolismo , Células Cultivadas , Cromonas/farmacología , Proteínas del Huevo/metabolismo , Femenino , Forminas , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Meiosis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Morfolinas/farmacología , Proteínas del Tejido Nervioso , Proteínas Nucleares/metabolismo , Oocitos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo
12.
J Biol Chem ; 288(21): 15167-80, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23558686

RESUMEN

TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamp(tm/tm)) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamp(tm/tm) sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamp(tm/tm) males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.


Asunto(s)
Proteínas Portadoras/metabolismo , Eliminación de Gen , Infertilidad Masculina/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Proteínas Portadoras/genética , Regulación de la Expresión Génica/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Mutantes , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/metabolismo , Procesamiento Proteico-Postraduccional/genética , Espermatozoides/patología , Testículo/patología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
J Clin Invest ; 134(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426493

RESUMEN

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Animales , Femenino , Humanos , Ratones , Embarazo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina/metabolismo , Implantación del Embrión/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Útero
14.
J Cell Sci ; 124(Pt 6): 940-50, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21378311

RESUMEN

The zona pellucida contains three proteins (ZP1, ZP2, ZP3), the precursors of which possess signal peptides, 'zona' domains and short (9-15 residue) cytoplasmic tails downstream of a transmembrane domain. The ectodomains of ZP2 and ZP3 are sufficient to form the insoluble zona matrix and yet each protein traffics through oocytes without oligomerization. ZP2 and ZP3 were fluorescently tagged and molecular interactions were assayed by fluorescent complementation in CHO cells and growing oocytes. ZP2 and ZP3 traffic independently, but colocalize at the plasma membrane. However, protein-protein interactions were observed only after release and incorporation of ZP2 and ZP3 into the extracellular matrix surrounding mouse oocytes. In the absence of their hydrophilic cytoplasmic tails, ZP2 and ZP3 interacted within the cell and did not participate in the zona pellucida. A heterologous GPI-anchored 'zona' domain protein fused with the cytoplasmic tails was integrated into the zona matrix. We conclude that the cytoplasmic tails are sufficient and necessary to prevent intracellular oligomerization while ensuring incorporation of processed ZP2 and ZP3 into the zona pellucida.


Asunto(s)
Proteínas del Huevo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Zona Pelúcida/metabolismo , Animales , Células CHO , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Proteínas del Huevo/química , Proteínas del Huevo/genética , Femenino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Oocitos/química , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida
15.
Development ; 137(6): 859-70, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20179092

RESUMEN

The hiatus between oocyte and embryonic gene transcription dictates a role for stored maternal factors in early mammalian development. Encoded by maternal-effect genes, these factors accumulate during oogenesis and enable the activation of the embryonic genome, the subsequent cleavage stages of embryogenesis and the initial establishment of embryonic cell lineages. Recent studies in mice have yielded new findings on the role of maternally provided proteins and multi-component complexes in preimplantation development. Nevertheless, significant gaps remain in our mechanistic understanding of the networks that regulate early mammalian embryogenesis, which provide an impetus and opportunities for future investigations.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Intercambio Materno-Fetal/fisiología , Ratones/embriología , Animales , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Intercambio Materno-Fetal/genética , Ratones/genética , Modelos Biológicos , Oocitos/crecimiento & desarrollo , Oocitos/fisiología , Embarazo , Procesamiento Proteico-Postraduccional/fisiología , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , ARN Mensajero Almacenado/fisiología
16.
Mol Hum Reprod ; 19(5): 279-89, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23335731

RESUMEN

Successful fertilization heralds the onset of development and requires both gamete recognition and a definitive block to polyspermy. Sperm initially bind and penetrate the extracellular zona pellucida (ZP) that surrounds ovulated eggs, but are unable to bind the zona surrounding preimplantation embryos. The ZP of humans is composed of four (ZP1-4) and that of mouse three (ZP1-3) glycoproteins. Models for gamete recognition developed in mice had proposed that sperm bind to ZP3 glycans. However, phenotypes observed in genetically engineered mice are not consistent with this widely accepted model. More recently, taking advantage of the observation that human sperm do not bind to mouse eggs, human ZP2 was defined as the zona ligand in transgenic mouse models using gain-of-function assays. The sperm-binding site is an N-terminal domain of ZP2 that is cleaved by ovastacin, a metalloendoprotease released from egg cortical granules following fertilization. Proteolysis of this docking site provides a definitive block to polyspermy as sperm bind to uncleaved, but not cleaved ZP2 even after fertilization and cortical granule exocytosis. While progress has been made in defining the ZP ligand, less headway has been made in identifying the cognate sperm receptor. Although a number of sperm receptor candidates have been documented to interact with specific proteins in the ZP in vitro, continued fertility after genetic ablation of the cognate gene indicates that none are essential for gamete recognition. These on-going investigations inform reproductive medicine and suggest new therapies to improve fertility and/or provide contraception, thus expanding reproductive choices for human couples.


Asunto(s)
Proteínas del Huevo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo , Cigoto/metabolismo , Animales , Proteínas del Huevo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Metaloproteasas/metabolismo , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , Proteolisis , Receptores de Superficie Celular/genética , Espermatozoides/crecimiento & desarrollo , Glicoproteínas de la Zona Pelúcida , Cigoto/citología , Cigoto/crecimiento & desarrollo
17.
Cell Rep ; 42(2): 112047, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36724075

RESUMEN

Mammalian development is precisely controlled by cell differentiation. Identifying new regulators and investigating their interactions provide insight into genetic networks defining pre-implantation development. We established a knockout mouse model of Dis3, an exosome associated ribonuclease. Homozygous Dis3 null embryos arrest at the morula stage of development. Using single-embryo RNA sequencing (RNA-seq), we observed persistence of Pou6f1 mRNA in homozygous null Dis3 embryos and that the cognate protein represses transcription of Nanog and Cdx2. The resultant defects in cell differentiation disrupt the morula-to-blastocyst transition and are embryonic lethal. Microinjection of Dis3 mRNA into zygotes rescues the phenotype. Point mutations of Dis3 ribonuclease in individual blastomeres prevents their incorporation into embryos. To overcome the paucity of embryos, we derived homozygous Dis3 null mouse embryonic stem cells to identify additional gene targets of POU6F1. Our findings delineate a regulatory pathway of DIS3-POU6F1 in pre-implantation mammalian embryogenesis.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Ribonucleasas , Animales , Ratones , Blastocisto/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Mamíferos/metabolismo , Ribonucleasas/metabolismo , ARN Mensajero/metabolismo
18.
Cell Rep ; 42(10): 113247, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37831603

RESUMEN

Perturbing the transcriptome of mammalian oocytes results in meiotic failure. We previously reported that RNA-exosome-associated RNase, EXOSC10, degrades unwanted protein-coding RNA and processes ribosomal RNA to ensure proper oocyte maturation. Here, we establish oocyte-specific knockout mice of another RNA-exosome-associated RNase, DIS3. Mutant females (Dis3cKO) exhibit significantly reduced fertility because oocytes arrest after the growth phase. Single-oocyte RNA sequencing (RNA-seq) and CUT&Tag analyses show that DIS3 degrades intergenic RNA and mediates transcription silencing that is essential for chromatin condensation and resumption of meiosis. Dis3cKO oocytes exhibit elevated H3K27me3 in a pre-defined manner due to insufficient demethylation. During oocyte growth, EXOSC10 functions with DIS3 to degrade intergenic RNA. Double-knockout oocytes have earlier growth defects and more accumulated transcripts. We conclude that RNA exosomes synergistically degrade unwanted RNA and mediate transcription termination to ensure transcriptome integrity during oocyte development.


Asunto(s)
Exosomas , ARN Polimerasa II , Ratones , Animales , Femenino , ARN Polimerasa II/metabolismo , Exosomas/metabolismo , Oocitos/metabolismo , Meiosis , ARN/metabolismo , Endorribonucleasas/metabolismo , Fertilidad/genética , Mamíferos/metabolismo
19.
Dev Cell ; 58(18): 1716-1732.e8, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37714160

RESUMEN

Early mammalian development occurs during embryo transit of the female reproductive tract. Transport is orchestrated by secreted oviduct fluid, unidirectional beating of epithelial cilia, and smooth muscle contractions. Using gene-edited mice, we document that conditional disruption of a component of the SWI/SNF chromatin remodeling complex in smooth muscle cells prevents transport through the oviduct without perturbing embryogenesis. Analysis with RNA sequencing (RNA-seq), transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunocleavage sequencing (ChIC-seq), and pharmacologic rescue experiments implicated prostaglandin signaling pathways. In comparison with controls, gene-edited mice had compromised chromatin accessibility at enhancer/promoters of Ptgs2, Pla2g16, Pla2r1, and Ptger3 (EP3) as well as decreased enhancer-promoter interactive looping critical for Ptgs2 (aka Cox-2) expression in a SWI/SNF complex-dependent manner. Treatment of wild-type mice with prostaglandin inhibitors phenocopied the genetically induced defect.


Asunto(s)
Ensamble y Desensamble de Cromatina , Prostaglandinas , Femenino , Animales , Ratones , Ciclooxigenasa 2/genética , Músculo Liso , Cromatina , Mamíferos
20.
Proc Natl Acad Sci U S A ; 106(18): 7473-8, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19376971

RESUMEN

During oogenesis, mammalian eggs accumulate proteins required for early embryogenesis. Although limited data suggest a vital role of these maternal factors in chromatin reprogramming and embryonic genome activation, the full range of their functions in preimplantation development remains largely unknown. Here we report a role for maternal proteins in maintaining chromosome stability and euploidy in early-cleavage mouse embryogenesis. Filia, expressed in growing oocytes, encodes a protein that binds to MATER and participates in a subcortical maternal complex essential for cleavage-stage embryogenesis. The depletion of maternal stores of Filia impairs preimplantation embryo development with a high incidence of aneuploidy that results from abnormal spindle assembly, chromosome misalignment, and spindle assembly checkpoint (SAC) inactivation. In helping to ensure normal spindle morphogenesis, Filia regulates the proper allocation of the key spindle assembly regulators (i.e., AURKA, PLK1, and gamma-tubulin) to the microtubule-organizing center via the RhoA signaling pathway. Concurrently, Filia is required for the placement of MAD2, an essential component of the SAC, to kinetochores to enable SAC function. Thus, Filia is central to integrating the spatiotemporal localization of regulators that helps ensure euploidy and high-quality cell cycle progression in preimplantation mouse development. Defects in the well-conserved human homologue could play a similar role and account for recurrent human fetal wastage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fase de Segmentación del Huevo/fisiología , Embrión de Mamíferos/fisiología , Ploidias , Proteínas/fisiología , Huso Acromático/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasas , Fase de Segmentación del Huevo/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Proteínas Mad2 , Ratones , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Proteínas Proto-Oncogénicas/metabolismo , Tubulina (Proteína)/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA