Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Annu Rev Immunol ; 40: 443-467, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471837

RESUMEN

A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.


Asunto(s)
COVID-19 , Hipersensibilidad , Animales , Citocinas/metabolismo , Homeostasis , Humanos , Linfocitos T Colaboradores-Inductores/metabolismo , Células Th2
2.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32392463

RESUMEN

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Asunto(s)
Plasticidad de la Célula/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Respirovirus/etiología , Presentación de Antígeno , Biomarcadores , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunofenotipificación , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos/inmunología , Receptores Fc/metabolismo , Infecciones por Respirovirus/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
3.
J Allergy Clin Immunol ; 149(4): 1413-1427.e2, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34506849

RESUMEN

BACKGROUND: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE: We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS: Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS: Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS: Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.


Asunto(s)
Asma , Hiperreactividad Bronquial , Alérgenos , Animales , Hiperreactividad Bronquial/patología , Citocinas , Dermatophagoides pteronyssinus , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interleucina-33 , Pulmón , Linfocitos , Ratones , Proteínas Serina-Treonina Quinasas , Pyroglyphidae , Células Th2
4.
Respir Res ; 23(1): 202, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945604

RESUMEN

BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.


Asunto(s)
Antiinfecciosos , Tratamiento Farmacológico de COVID-19 , Complemento C5 , Inactivadores del Complemento/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptidos Cíclicos , SARS-CoV-2 , Resultado del Tratamiento
5.
J Allergy Clin Immunol ; 144(6): 1648-1659.e9, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31330218

RESUMEN

BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.


Asunto(s)
Asma/inmunología , Ceramidas/inmunología , Metabolismo de los Lípidos/inmunología , Proteínas de la Membrana/inmunología , Células Th2/inmunología , Animales , Asma/genética , Ceramidas/genética , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células Th2/patología
6.
FASEB J ; 30(12): 4289-4300, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27645259

RESUMEN

ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3-/-) and transgenic (Ormdl3Tg/wt) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3-/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C18-long chain bases were not significantly altered in the plasma and tissues of Ormdl3-/- mice, whereas C18-sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3-/- mice did not show an altered SPT activity compared with Ormdl3+/- and Ormdl3+/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S., Hornemann, T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Animales , Asma/metabolismo , Células HEK293 , Humanos , Pulmón/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Esfingolípidos/sangre
7.
Biochim Biophys Acta ; 1853(5): 940-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25601713

RESUMEN

Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Uniones Célula-Matriz/metabolismo , Cortactina/química , Cortactina/metabolismo , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Proteínas de Microfilamentos/metabolismo , Dominios Homologos src , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/efectos de los fármacos , Uniones Célula-Matriz/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Adhesiones Focales/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Modelos Biológicos , Fenotipo , Proteolisis/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Relación Estructura-Actividad
9.
Sci Transl Med ; 15(710): eadi0252, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37611083

RESUMEN

Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , Proteómica , Proteínas del Sistema Complemento , Activación de Complemento
10.
Cell Rep Med ; 3(12): 100833, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36459994

RESUMEN

GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).


Asunto(s)
COVID-19 , Macrófagos Alveolares , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Pulmón , Macrófagos
11.
Front Immunol ; 9: 2006, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233591

RESUMEN

Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Asma/inmunología , Eicosanoides/metabolismo , Eosinófilos/inmunología , Inflamación/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Presentación de Antígeno , Degranulación de la Célula , Citocinas/metabolismo , Eicosanoides/inmunología , Humanos , Inmunidad Innata , Activación de Linfocitos
12.
Methods Mol Biol ; 1559: 121-136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28063042

RESUMEN

Allergic asthma is a heterogeneous inflammatory lung disease affecting millions of people worldwide and with a steadily increasing incidence. Mouse models have been of utmost importance in uncovering key inflammatory cell types, cytokines, and pathways in the development and maintenance of allergic asthma. Historically, the mainstay in experimental asthma research was sensitizing rodents to the model protein antigen ovalbumin (OVA) with the pro-Th2 adjuvant aluminum hydroxide, followed by repetitive OVA exposures to the airways to initiate a Th2-skewed adaptive immune response leading to eosinophilic airway inflammation and airway hyperreactivity (AHR). In the last 5 years, OVA is often replaced by naturally occurring allergens such as house dust mite (HDM) or cockroach extracts, but the principle of first sensitizing and then repetitively challenging mice with the same antigen is unchanged. Here, we describe an often used and relevant HDM-based protocol to establish acute allergic asthma, and the methods we have developed to rapidly analyze inflammatory cell infiltration in the bronchalveolar lavage fluid by flow cytometry. Moreover, we explain the methods to restimulate T cells from lung-draining mediastinal lymph nodes with HDM to allow the measurement of cytokine secretion profiles of allergen reactive T cells.


Asunto(s)
Alérgenos/administración & dosificación , Asma/inmunología , Células Dendríticas/inmunología , Eosinófilos/inmunología , Pyroglyphidae/química , Células Th2/inmunología , Animales , Asma/inducido químicamente , Asma/patología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Mezclas Complejas/administración & dosificación , Citocinas/biosíntesis , Citocinas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Eosinófilos/patología , Citometría de Flujo/métodos , Humanos , Inmunofenotipificación , Intubación Intratraqueal/métodos , Pulmón/inmunología , Pulmón/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Activación de Linfocitos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/administración & dosificación , Pyroglyphidae/inmunología , Células Th2/patología
13.
Curr Protoc Mouse Biol ; 6(2): 169-184, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27248433

RESUMEN

Allergic asthma is a chronic inflammatory disease of the conducting airways characterized by the presence of allergen-specific IgE, Th2 cytokine production, eosinophilic airway inflammation, bronchial hyperreactivity, mucus overproduction, and structural changes in the airways. Investigators have tried to mimic these features of human allergic asthma in murine models. Whereas the surrogate allergen ovalbumin has been extremely valuable for unravelling underlying mechanisms of the disease, murine asthma models depend nowadays on naturally occurring allergens, such as house dust mite (HDM), cockroach, and Alternaria alternata. Here we describe a physiologically relevant model of acute allergic asthma based on sensitization and challenge with HDM extracts, and compare it with the ovalbumin/alum-induced asthma model. Moreover, we propose a detailed readout of the asthma phenotype, determining the degree of eosinophilia in bronchoalveolar lavage fluids by flow cytometry, visualizing goblet cell metaplasia, and measuring Th cytokine production by lung-draining mediastinal lymph node cells restimulated with HDM. © 2016 by John Wiley & Sons, Inc.


Asunto(s)
Asma/inmunología , Modelos Animales de Enfermedad , Ratones , Enfermedad Aguda , Compuestos de Alumbre/farmacología , Animales , Asma/etiología , Asma/parasitología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Eosinofilia/etiología , Eosinofilia/inmunología , Citometría de Flujo , Células Caliciformes/patología , Humanos , Metaplasia/etiología , Metaplasia/inmunología , Ovalbúmina/farmacología , Pyroglyphidae/química , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA