Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Health ; 21(1): 131, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527040

RESUMEN

BACKGROUND: Influenza seasonality has been frequently studied, but its mechanisms are not clear. Urban in-situ studies have linked influenza to meteorological or pollutant stressors. Few studies have investigated rural and less polluted areas in temperate climate zones. OBJECTIVES: We examined influences of medium-term residential exposure to fine particulate matter (PM2.5), NO2, SO2, air temperature and precipitation on influenza incidence. METHODS: To obtain complete spatial coverage of Baden-Württemberg, we modeled environmental exposure from data of the Copernicus Atmosphere Monitoring Service and of the Copernicus Climate Change Service. We computed spatiotemporal aggregates to reflect quarterly mean values at post-code level. Moreover, we prepared health insurance data to yield influenza incidence between January 2010 and December 2018. We used generalized additive models, with Gaussian Markov random field smoothers for spatial input, whilst using or not using quarter as temporal input. RESULTS: In the 3.85 million cohort, 513,404 influenza cases occurred over the 9-year period, with 53.6% occurring in quarter 1 (January to March), and 10.2%, 9.4% and 26.8% in quarters 2, 3 and 4, respectively. Statistical modeling yielded highly significant effects of air temperature, precipitation, PM2.5 and NO2. Computation of stressor-specific gains revealed up to 3499 infections per 100,000 AOK clients per year that are attributable to lowering ambient mean air temperature from 18.71 °C to 2.01 °C. Stressor specific gains were also substantial for fine particulate matter, yielding up to 502 attributable infections per 100,000 clients per year for an increase from 7.49 µg/m3 to 15.98 µg/m3. CONCLUSIONS: Whilst strong statistical association of temperature with other stressors makes it difficult to distinguish between direct and mediated temperature effects, results confirm genuine effects by fine particulate matter on influenza infections for both rural and urban areas in a temperate climate. Future studies should attempt to further establish the mediating mechanisms to inform public health policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gripe Humana , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios de Cohortes , Temperatura , Dióxido de Nitrógeno , Incidencia , Gripe Humana/epidemiología , Exposición a Riesgos Ambientales/análisis , Seguro de Salud , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
2.
Environ Monit Assess ; 186(1): 441-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24037227

RESUMEN

Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.


Asunto(s)
Escarabajos/fisiología , Monitoreo del Ambiente , Picea/parasitología , Enfermedades de las Plantas/parasitología , Animales , Cambio Climático , Alemania , Imágenes Satelitales , Nave Espacial
3.
Environ Monit Assess ; 176(1-4): 531-47, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20635199

RESUMEN

Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.


Asunto(s)
Monitoreo del Ambiente/métodos , África Austral , Ecosistema , Sistemas de Información Geográfica , Namibia
4.
Parasit Vectors ; 8: 163, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25890278

RESUMEN

BACKGROUND: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. METHODS: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. RESULTS: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. CONCLUSIONS: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.


Asunto(s)
Tecnología de Sensores Remotos , Esquistosomiasis/epidemiología , África del Sur del Sahara/epidemiología , Animales , Humanos , Factores de Riesgo
5.
PLoS Negl Trop Dis ; 9(11): e0004217, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26587839

RESUMEN

BACKGROUND: Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. METHODOLOGY: We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. PRINCIPAL FINDINGS: Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. CONCLUSIONS/SIGNIFICANCE: A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.


Asunto(s)
Métodos Epidemiológicos , Tecnología de Sensores Remotos/métodos , Esquistosomiasis/transmisión , Adolescente , Burkina Faso/epidemiología , Niño , Côte d'Ivoire/epidemiología , Ecosistema , Humanos , Modelos Estadísticos , Esquistosomiasis/epidemiología
6.
Geospat Health ; 10(2): 398, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26618326

RESUMEN

Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d'Ivoire using high- and moderate-resolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixel-based modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.


Asunto(s)
Tecnología de Sensores Remotos , Esquistosomiasis/epidemiología , Esquistosomiasis/transmisión , Algoritmos , Animales , Côte d'Ivoire/epidemiología , Ecosistema , Humanos , Modelos Estadísticos , Medición de Riesgo , Factores de Riesgo
7.
Philos Trans R Soc Lond B Biol Sci ; 369(1643): 20130193, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24733948

RESUMEN

The African protected area (PA) network has the potential to act as a set of functionally interconnected patches that conserve meta-populations of mammal species, but individual PAs are vulnerable to habitat change which may disrupt connectivity and increase extinction risk. Individual PAs have different roles in maintaining connectivity, depending on their size and location. We measured their contribution to network connectivity (irreplaceability) for carnivores and ungulates and combined it with a measure of vulnerability based on a 30-year trend in remotely sensed vegetation cover (Normalized Difference Vegetation Index). Highly irreplaceable PAs occurred mainly in southern and eastern Africa. Vegetation cover change was generally faster outside than inside PAs and particularly so in southern Africa. The extent of change increased with the distance from PAs. About 5% of highly irreplaceable PAs experienced a faster vegetation cover loss than their surroundings, thus requiring particular conservation attention. Our analysis identified PAs at risk whose isolation would disrupt the connectivity of the PA network for large mammals. This is an example of how ecological spatial modelling can be combined with large-scale remote sensing data to investigate how land cover change may affect ecological processes and species conservation.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Ecosistema , Mamíferos , Modelos Teóricos , África Oriental , Animales , Simulación por Computador , Imágenes Satelitales
8.
PLoS One ; 5(3): e9612, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20305809

RESUMEN

BACKGROUND: The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. CONCLUSION/SIGNIFICANCE: Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.


Asunto(s)
Gatos/fisiología , Especies en Peligro de Extinción , Densidad de Población , Animales , Asia Sudoriental , Biología Computacional/métodos , Conservación de los Recursos Naturales , Extinción Biológica , Geografía , Humanos , Modelos Biológicos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA