Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(17): 8535-8543, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30962389

RESUMEN

Most nonsegmented negative strand (NNS) RNA virus genomes have complementary 3' and 5' terminal nucleotides because the promoters at the 3' ends of the genomes and antigenomes are almost identical to each other. However, according to published sequences, both ends of ebolavirus genomes show a high degree of variability, and the 3' and 5' terminal nucleotides are not complementary. If correct, this would distinguish the ebolaviruses from other NNS RNA viruses. Therefore, we investigated the terminal genomic and antigenomic nucleotides of three different ebolavirus species, Ebola (EBOV), Sudan, and Reston viruses. Whereas the 5' ends of ebolavirus RNAs are highly conserved with the sequence ACAGG-5', the 3' termini are variable and are typically 3'-GCCUGU, ACCUGU, or CCUGU. A small fraction of analyzed RNAs had extended 3' ends. The majority of 3' terminal sequences are consistent with a mechanism of nucleotide addition by hairpin formation and back-priming. Using single-round replicating EBOV minigenomes, we investigated the effect of the 3' terminal nucleotide on viral replication and found that the EBOV polymerase initiates replication opposite the 3'-CCUGU motif regardless of the identity of the 3' terminal nucleotide(s) and of the position of this motif relative to the 3' end. Deletion or mutation of the first residue of the 3'-CCUGU motif completely abolished replication initiation, suggesting a crucial role of this nucleotide in directing initiation. Together, our data show that ebolaviruses have evolved a unique replication strategy among NNS RNA viruses resulting in 3' overhangs. This could be a mechanism to avoid antiviral recognition.


Asunto(s)
Ebolavirus , Genoma Viral/genética , ARN Viral , Replicación Viral/genética , Secuencia de Bases/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/fisiología , Nucleótidos/genética , ARN Viral/biosíntesis , ARN Viral/genética
2.
PLoS Pathog ; 13(12): e1006803, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281742

RESUMEN

The large polymerase subunit (L) of non-segmented negative strand RNA viruses transcribes viral mRNAs and replicates the viral genome. Studies with VSV have shown that conserved region V (CRV) of the L protein is part of the capping domain. However, CRV folds over and protrudes into the polymerization domain, suggesting that it might also have a role in RNA synthesis. In this study, the role of respiratory syncytial virus (RSV) CRV was evaluated using single amino acid substitutions and a small molecule inhibitor called BI-D. Effects were analyzed using cell-based minigenome and in vitro biochemical assays. Several amino acid substitutions inhibited production of capped, full-length mRNA and instead resulted in accumulation of short transcripts of approximately 40 nucleotides in length, confirming that RSV CRV has a role in capping. In addition, all six variants tested were either partially or completely defective in RNA replication. This was due to an inability of the polymerase to efficiently elongate the RNA within the promoter region. BI-D also inhibited transcription and replication. In this case, polymerase elongation activity within the promoter region was enhanced, such that the small RNA transcribed from the promoter was not released and instead was elongated past the first gene start signal. This was accompanied by a decrease in mRNA initiation at the first gene start signal and accumulation of aberrant RNAs of varying length. Thus, in addition to its function in mRNA capping, conserved region V modulates the elongation properties of the polymerase to enable productive transcription and replication to occur.


Asunto(s)
ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antivirales/farmacología , Línea Celular , Secuencia Conservada , Descubrimiento de Drogas , Genes Virales , Humanos , Modelos Moleculares , Regiones Promotoras Genéticas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/patogenicidad , Elongación de la Transcripción Genética , Proteínas Virales/química
3.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331091

RESUMEN

Ebola virus (EBOV) and Reston virus (RESTV) are members of the Ebolavirus genus which greatly differ in their pathogenicity. While EBOV causes a severe disease in humans characterized by a dysregulated inflammatory response and elevated cytokine and chemokine production, there are no reported disease-associated human cases of RESTV infection, suggesting that RESTV is nonpathogenic for humans. The underlying mechanisms determining the pathogenicity of different ebolavirus species are not yet known. In this study, we dissected the host response to EBOV and RESTV infection in primary human monocyte-derived macrophages (MDMs). As expected, EBOV infection led to a profound proinflammatory response, including strong induction of type I and type III interferons (IFNs). In contrast, RESTV-infected macrophages remained surprisingly silent. Early activation of IFN regulatory factor 3 (IRF3) and NF-κB was observed in EBOV-infected, but not in RESTV-infected, MDMs. In concordance with previous results, MDMs treated with inactivated EBOV and Ebola virus-like particles (VLPs) induced NF-κB activation mediated by Toll-like receptor 4 (TLR4) in a glycoprotein (GP)-dependent manner. This was not the case in cells exposed to live RESTV, inactivated RESTV, or VLPs containing RESTV GP, indicating that RESTV GP does not trigger TLR4 signaling. Our results suggest that the lack of immune activation in RESTV-infected MDMs contributes to lower pathogenicity by preventing the cytokine storm observed in EBOV infection. We further demonstrate that inhibition of TLR4 signaling abolishes EBOV GP-mediated NF-κB activation. This finding indicates that limiting the excessive TLR4-mediated proinflammatory response in EBOV infection should be considered as a potential supportive treatment option for EBOV disease.IMPORTANCE Emerging infectious diseases are a major public health concern, as exemplified by the recent devastating Ebola virus (EBOV) outbreak. Different ebolavirus species are associated with widely varying pathogenicity in humans, ranging from asymptomatic infections for Reston virus (RESTV) to severe disease with fatal outcomes for EBOV. In this comparative study of EBOV- and RESTV-infected human macrophages, we identified key differences in host cell responses. Consistent with previous data, EBOV infection is associated with a proinflammatory signature triggered by the surface glycoprotein (GP), which can be inhibited by blocking TLR4 signaling. In contrast, infection with RESTV failed to stimulate a strong host response in infected macrophages due to the inability of RESTV GP to stimulate TLR4. We propose that disparate proinflammatory host signatures contribute to the differences in pathogenicity reported for ebolavirus species and suggest that proinflammatory pathways represent an intriguing target for the development of novel therapeutics.


Asunto(s)
Ebolavirus/inmunología , Ebolavirus/patogenicidad , Interacciones Huésped-Patógeno , Macrófagos/virología , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Quimiocinas/inmunología , Quimiocinas/metabolismo , Chlorocebus aethiops , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Ebolavirus/fisiología , Perfilación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferones/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Células Vero , Virulencia
4.
J Virol ; 90(16): 7268-7284, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27252530

RESUMEN

UNLABELLED: A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. IMPORTANCE: Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by many viruses. We show that EBOV does not induce formation of stress granules (SGs) in infected cells and is therefore unrestricted by their concomitant translational arrest. We identified SG proteins sequestered within viral inclusions, which did not impair protein translation. We further show that EBOV is unable to block SG formation triggered by exogenous stress early in infection. These findings provide insight into potential targets of therapeutic intervention. Additionally, we identified a novel function of the interferon antagonist VP35, which is able to disrupt SG formation.


Asunto(s)
Citoplasma/virología , Ebolavirus/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Factores Inmunológicos/análisis , Cuerpos de Inclusión Viral/virología , Estrés Fisiológico , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Ebolavirus/inmunología , Proteínas de Choque Térmico/análisis , Humanos , Cuerpos de Inclusión Viral/química
5.
J Virol ; 87(6): 3196-207, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283954

RESUMEN

The mechanisms by which the respiratory syncytial virus (RSV) RNA-dependent RNA polymerase (RdRp) initiates mRNA transcription and RNA replication are poorly understood. A previous study, using an RSV minigenome, suggested that the leader (Le) promoter region at the 3' end of the genome has two initiation sites, one at position +1, opposite the 3' terminal nucleotide of the genome, and a second site at position +3, at a sequence that closely resembles the gene start (GS) signal of the RSV L gene. In this study, we show that the +3 initiation site of the Le is utilized with apparently high frequency in RSV-infected cells and yields small RNA transcripts that are heterogeneous in length but mostly approximately 25 nucleotides (nt) long. Experiments with an in vitro assay in which RSV RNA synthesis was reconstituted using purified RdRp and an RNA oligonucleotide showed that nt 1 to 14 of the Le promoter were sufficient to signal initiation from +3 and that the RdRp could access the +3 initiation site without prior initiation at +1. In a minigenome assay, nucleotide substitutions within the Le to increase its similarity to a GS signal resulted in more-efficient elongation of the RNA initiated from position +3 and a reduction in RNA initiated from the NS1 gene start signal at +45. Taken together, these data suggest a new model for initiation of sequential transcription of the RSV genes, whereby the RdRp initiates the process from a gene start-like sequence at position +3 of the Le.


Asunto(s)
Regiones no Traducidas 5' , Regiones Promotoras Genéticas , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Sincitiales Respiratorios/enzimología , Sitio de Iniciación de la Transcripción , Transcripción Genética , Northern Blotting , Línea Celular , Humanos , ARN Viral/metabolismo
6.
PLoS Pathog ; 8(10): e1002980, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23093940

RESUMEN

Respiratory syncytial virus (RSV) is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1-25 of the trailer complement (TrC) promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3' end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3' end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3' terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection.


Asunto(s)
Regiones Promotoras Genéticas , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Sincitiales Respiratorios/enzimología , Virus Sincitiales Respiratorios/genética , Línea Celular , Genoma Viral , Humanos , ARN Complementario , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/metabolismo , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Cell Rep ; 24(10): 2573-2580.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184492

RESUMEN

Recently, traces of zoonotic viruses have been discovered in bats and other species around the world, but despite repeated attempts, full viral genomes have not been rescued. The absence of critical genetic sequences from these viruses and the difficulties to isolate infectious virus from specimens prevent research on their pathogenic potential for humans. One example of these zoonotic pathogens is Lloviu virus (LLOV), a filovirus that is closely related to Ebola virus. Here, we established LLOV minigenome systems based on sequence complementation from other filoviruses. Our results show that the LLOV replication and transcription mechanisms are, in general, more similar to ebolaviruses than to marburgviruses. We also show that a single nucleotide at the 3' genome end determines species specificity of the LLOV polymerase. The data obtained here will be instrumental for the rescue of infectious LLOV clones for pathogenesis studies.


Asunto(s)
Quirópteros/virología , Ebolavirus/patogenicidad , Genoma Viral/genética , Marburgvirus/patogenicidad , Replicación Viral/fisiología , Animales , Línea Celular Tumoral , Ebolavirus/genética , Filoviridae/genética , Filoviridae/patogenicidad , Células HEK293 , Humanos , Marburgvirus/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética
8.
Antiviral Res ; 146: 21-27, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28807685

RESUMEN

Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Genoma Viral , Pruebas de Sensibilidad Microbiana/métodos , ARN Polimerasa II/genética , Animales , Antivirales/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Ebolavirus/enzimología , Proteínas del Choque Térmico HSP72/antagonistas & inhibidores , Fiebre Hemorrágica Ebola/virología , Ensayos Analíticos de Alto Rendimiento/economía , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Pruebas de Sensibilidad Microbiana/economía , Pruebas de Sensibilidad Microbiana/instrumentación , ARN Polimerasa II/metabolismo , ARN Viral/genética , Transcripción Genética/efectos de los fármacos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA