Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Sep Sci ; 46(17): e2300137, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449340

RESUMEN

Froth treatment tailings are one type of waste stream generated during the extraction of surface-mined oil sands bitumen. To remove water and solids from bitumen froth recovered during the water-based extraction process, hydrocarbon diluent is added, and settling and/or centrifugation are applied to the diluted bitumen froth, producing diluted bitumen and froth treatment tailings. While recovery processes are in place to remove and recycle the diluent from froth treatment tailings, some residual diluent can remain. Since tailings are stored in outdoor ponds, the residual diluent can have implications for methanogenic microbial processes and resulting greenhouse gas emissions. This work presents a methodology to accurately extract and quantify diluent hydrocarbons from froth treatment tailings using gas chromatography. A cold-start temperature program is used to separate diluent hydrocarbons from any residual bitumen in the sample, and diluent is quantified using commercial standards as well as unprocessed diluent. A series of extraction parameters were tested and results from multiple conditions are shown with a rationale for the selected optimized parameters. Quantification of diluent in tailings samples is demonstrated from 60 to 5329 µg/g, and results from quality control standards show an average diluent recovery of 100 ± 10%.

2.
Environ Monit Assess ; 195(10): 1228, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725196

RESUMEN

Surface oil sands mining and extraction in northern Alberta's Athabasca oil sands region produce large volumes of oil sands process-affected water (OSPW). OSPW is a complex mixture containing major contaminant classes including trace metals, polycyclic aromatic hydrocarbons, and naphthenic acid fraction compounds (NAFCs). Naphthenic acids (NAs) are the primary organic toxicants in OSPW, and reducing their concentrations is a priority for oil sands companies. Previous evidence has shown that constructed wetland treatment systems (CWTSs) are capable of reducing the concentration of NAs and the toxicity of OSPW through bioremediation. In this study, we constructed greenhouse mesocosms with OSPW or lab process water (LPW) (i.e., water designed to mimic OSPW minus the NAFC content) with three treatments: (1) OSPW planted with Carex aquatilis; (2) OSPW, no plants; and (3) LPW, no plants. The OSPW-C. aquatilis treatment saw a significant reduction in NAFC concentrations in comparison to OSPW, no plant treatments, but both changed the distribution of the NAFCs in similar ways. Upon completion of the study, treatments with OSPW saw fewer high-molecular-weight NAs and an increase in the abundance of O3- and O4-containing formulae. Results from this study provide invaluable information on how constructed wetlands can be used in future remediation of OSPW in a way that previous studies were unable to achieve due to uncontrollable environmental factors in field experiments and the active, high-energy processes used in CWTSs pilot studies.


Asunto(s)
Carex (Planta) , Oligoelementos , Humedales , Yacimiento de Petróleo y Gas , Monitoreo del Ambiente , Agua
3.
J Environ Qual ; 45(2): 494-502, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27065396

RESUMEN

Rain runoff from windrowed or stockpiled manure may contain antimicrobials with the potential to contaminate surface and ground water. To quantify the concentration of antimicrobials transported in runoff from windrowed manure, antimicrobials were administered continuously in feed to beef cattle () as follows: 44 mg of chlortetracycline kg feed (dry weight), a 1:1 mixture of 44 mg of chlortetracycline and 44 mg sulfamethazine kg feed, and 11 mg of tylosin kg feed. Cattle in a fourth treatment group received no antimicrobials (control). Manure from the cattle was used to construct two windrows per treatment. On Days 2 and 21 of composting, a portable Guelph Rainfall Simulator II was used to apply deionized water at an intensity of 127 mm h to each windrow, and the runoff was collected. Manure samples were collected before rain simulations on Days 2 and 21 of composting for antimicrobial analysis. On Day 2, average concentrations of chlortetracycline, sulfamethazine, and tylosin in manure were 2580, 450, and 120 µg kg, respectively, with maximum concentrations in runoff of 2740, 3600, and 4930 µg L, respectively. Concentrations of all three antimicrobials in runoff were higher ( < 0.05) on Day 2 than on Day 21, reflecting the higher concentrations in manure on Day 2. Maximum estimated masses of chlortetracycline, sulfamethazine, and tylosin that could be transported in runoff from a windrow (3 m long, 2.5 m wide, 1.5 m high) were approximately 0.87 to 0.94, 1.57, and 1.23 g, respectively. This study demonstrates the importance of windrow composting in reducing antimicrobial concentrations in manure. The runoff from windrows can be a source of antimicrobials and demonstrates the need for containment of runoff from composting facilities to mitigate antimicrobial contamination of surface and groundwater resources.


Asunto(s)
Antiinfecciosos/análisis , Compostaje , Estiércol , Contaminantes Químicos del Agua/análisis , Animales , Bovinos , Carne Roja , Suelo , Movimientos del Agua
4.
J Environ Qual ; 43(2): 549-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25602656

RESUMEN

Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 µg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 µg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 µg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 µg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application.

5.
J Environ Qual ; 43(3): 1061-70, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25602835

RESUMEN

Dissipation of veterinary antimicrobials is known to occur during aerated windrow composting of beef cattle manure. However, it is unclear if a similar dissipation occurs during stockpiling. Chlortetracycline, tylosin, and sulfamethazine are three of the most commonly used veterinary antimicrobials in beef cattle production in western Canada. Their dissipation in stockpiled manure was investigated over 140 d during winter in Alberta, Canada. Beef cattle housed in pens were administered 44 mg of chlortetracycline kg feed (dry weight), 44 mg of chlortetracycline + 44 mg sulfamethazine kg feed, 11 mg of tylosin kg feed, or feed without antimicrobials (control). Manure samples were extracted using pressurized liquid extraction, and the extracts were analyzed for chlortetracycline, sulfamethazine, and tylosin by LC-MS-MS. Dissipation of all three antimicrobials in the manure was explained by exponential decay kinetics. Times for 50% dissipation (DT) were 1.8 ± 0.1 d for chlortetracycline alone or 6.0 ± 0.8 d when mixed with sulfamethazine, 20.8 ± 3.8 d for sulfamethazine, and 4.7 ± 1.2 d for tylosin. After 77 d, <1% of initial chlortetracycline and <2% of sulfamethazine remained. Tylosin residues were more variable, decreasing to approximately 12% of initial levels after 28 d, with 20% present after 77 d and 13% after 140 d. Temperatures within stockpiles reached maximum values within 6 d of establishment and varied with location (bottom, 62.5°C; middle, 63.8°C; and top, 42.9°C). Antimicrobials in the manure did not inhibit microbial activity, as indicated by temperature and mass losses of carbon (C) and nitrogen (N). The C/N ratio in the manure decreased over the stockpiling period, indicating decomposition of manure to a more stable state. Dissipation of excreted residues with DT values 1.8 to 20.8 d showed that stockpiling can be as effective as windrow composting in mitigating the transfer of these three veterinary antimicrobials into the environment during land application of processed manure.

6.
Chemosphere ; 358: 142076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670506

RESUMEN

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Asunto(s)
Ácidos Carboxílicos , Yacimiento de Petróleo y Gas , Suelo , Humedales , Adsorción , Ácidos Carboxílicos/química , Suelo/química , Minerales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Arena/química
7.
Front Microbiol ; 14: 1168653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465026

RESUMEN

The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.

8.
J Environ Sci Health B ; 47(7): 631-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22560025

RESUMEN

Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT(50) values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.


Asunto(s)
Sedimentos Geológicos/análisis , Glicina/análogos & derivados , Herbicidas/análisis , Organofosfonatos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Glicina/análisis , Isoxazoles , Tetrazoles , Humedales , Glifosato
9.
Front Plant Sci ; 13: 857535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574135

RESUMEN

One of the reclamation objectives for treated oil sands tailings (OST) is to establish boreal forest communities that can integrate with the surrounding area. Hence, selection of appropriate soil reclamation cover designs and plant species for revegetation are important aspects of tailings landform reclamation and closure. Research and monitoring of the long term and immediate impacts of capped OST on the growth and survival of native boreal plant species are currently underway. However, plant responses to OST-associated toxicity are not well known at the molecular level. Using RNA sequencing, we examined the effects of three types of OST on the willow transcriptome under different capping strategies. The transcriptomic data showed that some genes respond universally and others in a specific manner to different types of OST. Among the dominant and shared upregulated genes, we found some encoding protein detoxification (PD), Cytochrome P450 (CYPs), glutathione S-transferase regulatory process (GST), UDP-glycosyltransferase (UGT), and ABC transporter and regulatory process associated proteins. Moreover, genes encoding several stress-responsive transcription factors (bZIP, BHLH, ERF, MYB, NAC, WRKY) were upregulated with OST-exposure, while high numbers of transcripts related to photosynthetic activity and chloroplast structure and function were downregulated. Overall, the expression of 40 genes was found consistent across all tailings types and capping strategies. The qPCR analysis of a subset of these shared genes suggested that they could reliably distinguish plants exposed to different OST associated stress. Our results indicated that it is possible to develop OST stress exposure biosensors merely based on changes in the level of expression of a relatively small set of genes. The outcomes of this study will further guide optimization of OST capping and revegetation technology by using knowledge based plant stress adaptation strategies.

10.
Microorganisms ; 9(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069522

RESUMEN

In Alberta's Athabasca oil sands region (AOSR), over 1.25 billion m3 of tailings waste from the bitumen extraction process are stored in tailings ponds. Fugitive emissions associated with residual hydrocarbons in tailings ponds pose an environmental concern and include greenhouse gases (GHGs), reduced sulphur compounds (RSCs), and volatile organic compounds (VOCs). Froth treatment tailings (FTT) are a specific type of tailings waste stream from the bitumen froth treatment process that contains bioavailable diluent: either naphtha or paraffins. Tailings ponds that receive FTT are associated with the highest levels of biogenic gas production, as diverse microbial communities biodegrade the residual diluent. In this review, current literature regarding the composition, chemical analysis, and microbial degradation of FTT and its constituents is presented in order to provide a more complete understanding of the complex chemistry and biological processes related to fugitive emissions from tailings ponds receiving FTT. Characterizing the composition and biodegradation of FTT is important from an environmental perspective to better predict emissions from tailings ponds and guide tailings pond management decisions.

11.
Sci Total Environ ; 795: 148857, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328940

RESUMEN

Bitumen extraction from surface-mined oil sands deposits results in the accumulation of large volumes of oil sands process-affected water (OSPW). Naphthenic acids (NAs) are primary contributors to OSPW toxicity and have been a focal point for the development of OSPW remediation strategies. Phytoremediation is an approach that utilizes plants and their associated microbes to remediate contaminants from soil and groundwater. While previous evidence has indicated a role for phytoremediation in OSPW treatment through the transformation and degradation of NAs, there are no reports that demonstrate the direct uptake of NAs into plant tissue. Using NAs labelled with 14C radioisotopes (14C-NAs) paired with whole-plant autoradiography, we show that NAs representing aliphatic (linear), single-ring, and diamondoid compounds were effectively removed from hydroponic solution and OSPW-treated soil by sandbar willow (Salix interior) and slender wheatgrass (Elymus trachycaulus) and their associated microbiomes. The NA-derived 14C label accumulated in root and shoot tissues of both plant species and was concentrated in vascular tissue and rapidly growing sink tissues, indicating that 14C-NAs or their metabolic derivatives were incorporated into physiological processes within the plants. Slender wheatgrass seedlings grown under axenic (sterile) hydroponic and soil conditions also effectively removed all 14C-NAs, including a highly stable diamondoid NA, demonstrating that plants can directly take up simple and complex NAs without the assistance of microbes. Furthermore, root and shoot tissue fractionation into major biomolecule groups suggests that NA-derived carbon is allocated toward biomolecule synthesis rapidly after NA treatment. These findings provide evidence of plant-mediated uptake of NAs and support a direct role for plants and their associated microbes in the development of future large-scale OSPW phytoremediation strategies.


Asunto(s)
Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Agua , Contaminantes Químicos del Agua/análisis
12.
J Environ Sci Health B ; 45(1): 11-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20390926

RESUMEN

Sulfonylurea herbicides are widely used in crop production on the Canadian prairies and a portion of these herbicides applied to cropland are inevitably lost to surrounding aquatic ecosystems. Little is known regarding the presence of sulfonylurea herbicides in wetlands located amongst cropland. This paper describes a new analytical method for the extraction and the determination of seven sulfonylurea herbicides (thifensulfuron-methyl, tribenuron-methyl, ethametsulfuron-methyl, metsulfuron-methyl, rimsulfuron, nicosulfuron and sulfosulfuron) in wetland sediment. The method provided > 85% analyte recovery from fortified sediment for six of the seven sulfonylurea herbicides with a limit of quantification (LOQ) of 1.0 microg kg(-1). Tribenuron-methyl had significantly lower recovery compared to the other six sulfonylurea herbicides (LOQ = 2 microg kg(-1)). Mean recovery standard deviations were < 10%. This methodology was used to quantify sulfonylurea herbicide residues in sediment samples collected from prairie wetlands situated within the agricultural landscape of Saskatchewan and Manitoba, Canada. This is the first-known detection of sulfonylurea herbicide residues in prairie wetland sediments. Ethametsulfuron-methyl, sulfosulfuron and metsulfuron-methyl, the three most environmentally persistent of the seven sulfonylurea herbicides monitored in the surveillance component of this study, were most frequently detected in wetland sediment with mean concentrations ranging from 1.2 to 10 microg kg(-1).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Sedimentos Geológicos/análisis , Herbicidas/análisis , Compuestos de Sulfonilurea/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Productos Agrícolas/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química
13.
MethodsX ; 6: 876-909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080754

RESUMEN

We developed a scientifically robust and financially sustainable monitoring protocol to enable a consistent assessment of ecological recovery of physical, chemical, and biological indicators at certified reclaimed industrial wellsites in forested lands in noutheastern Alberta. Using the developed protocols, data can be generated from measurement of soil, vegetation, and landscape indicators at reclaimed wellsites and adjacent reference sites. We selected the appropriate vegetation, soil, and habitat indicators for a long-term reclamation monitoring program and have provided sampling protocols for the selected indicators here. The protocols may be used to identify and prioritize indicators of reduced ecosystem health and to track ecological recovery of reclaimed sites over time. The development of these integrated monitoring protocols is a first step towards successful and consistent long-term monitoring to assess ecological recovery of certified wellsites in Alberta. These protocols can be applied to wellsites and other similar sized disturbances in other forested regions too.

14.
Sci Total Environ ; 521-522: 191-9, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25839178

RESUMEN

Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots.


Asunto(s)
Antiinfecciosos/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Drogas Veterinarias/análisis , Animales , Clortetraciclina/análisis , Estiércol/análisis , Lluvia , Suelo/química , Sulfametazina/análisis , Tilosina/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Toxicol Chem ; 30(9): 1982-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21688306

RESUMEN

In the present study, an ephemeral (E) and a semipermanent (SP) wetland were divided into halves using a polyvinyl curtain and one-half of each wetland was treated with dicamba (3,6-dichloro-o-anisic acid), bromoxynil (3,5-dibromo-4-hydroxy-benzonitrile), MCPA [(4-chloro-2-methylphenoxy)acetic acid], 2,4-D [(2,4-dichlorophenoxy)acetic acid], mecoprop-P (R)-2-(4-chloro-o-tolyloxy)propionic acid], and dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propionic acid] such that concentrations in the water simulated an overspraying event, thus representing a worst-case scenario for wetland contamination. Water and sediment samples were taken over the 77-d study period to monitor herbicide concentrations. The dissipation of all six herbicides could be described by first-order reaction kinetics. In water, the field half-life (DT50) values ranged from 2.3 d (bromoxynil) to 31 d (dichlorprop). All six herbicides were detected in sediment samples from both wetlands. Overall, the phenoxypropionic acids (mecoprop-P and dichlorprop) were more persistent than the phenoxyacetic acids (2,4-D and MCPA) in both sediment and water. Use of bromide ion as a conservative tracer indicated that infiltration through sediment was an important route of water loss in both wetlands, especially in wetland E. Because strong correlations were found between the mass of each herbicide and bromide ion mass in wetland SP (r(2) = 0.59-0.76) and wetland E (r(2) = 0.80-0.95), it is likely that herbicide dissipation was due, in part, to mass lost by way of infiltration through sediment.


Asunto(s)
Herbicidas/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Ácido 2,4-Diclorofenoxiacético/análisis , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/análisis , Ácido 2-Metil-4-clorofenoxiacético/química , Canadá , Dicamba/análisis , Dicamba/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Semivida , Herbicidas/química , Concentración de Iones de Hidrógeno , Nitrilos/análisis , Nitrilos/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA