Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 53: 263-288, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518519

RESUMEN

Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Microglía/patología , Microglía/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/fisiología , Sistema Nervioso Central/metabolismo , Vía Clásica del Complemento/fisiología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Macrófagos/fisiología , Placa Amiloide/fisiopatología , Factor de Crecimiento Transformador beta/metabolismo
2.
Hum Mol Genet ; 31(6): 901-913, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34617111

RESUMEN

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors. Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy. We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay. Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and circular dichroism-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. In addition, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.


Asunto(s)
Encefalopatías , Epilepsia , Encefalopatías/metabolismo , Proteínas Portadoras/metabolismo , Epilepsia/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo
3.
PLoS Biol ; 18(1): e3000604, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935214

RESUMEN

Schizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients. We find evidence that microglia-mediated synaptic engulfment is enhanced with increased expression of C4. We also show that C4-dependent circuit dysfunction in the frontal cortex leads to decreased social interactions in juvenile and adult mice. These results demonstrate that increased expression of the schizophrenia-associated gene C4 causes aberrant circuit wiring in the developing prefrontal cortex and leads to deficits in juvenile and adult social behavior, suggesting that altered C4 expression contributes directly to schizophrenia pathogenesis.


Asunto(s)
Complemento C4/genética , Neuronas/fisiología , Corteza Prefrontal/citología , Esquizofrenia/genética , Conducta Social , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Animales Recién Nacidos , Comunicación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/patología , Regulación hacia Arriba/genética
4.
Mol Cell Proteomics ; 20: 100167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34678516

RESUMEN

Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Glicopéptidos/inmunología , N-Acetilglucosaminiltransferasas/inmunología , Animales , Encéfalo , Ratones , Células Madre Embrionarias de Ratones
5.
PLoS Biol ; 12(7): e1001908, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25025157

RESUMEN

Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic transmission, which is regulated by GABAAR activity. We mapped palmitoylation to Cys212 and Cys284, which are critical for both association of gephyrin with the postsynaptic membrane and gephyrin clustering. We identified DHHC-12 as the principal palmitoyl acyltransferase that palmitoylates gephyrin. Furthermore, gephyrin pamitoylation potentiated GABAergic synaptic transmission, as evidenced by an increased amplitude of miniature inhibitory postsynaptic currents. Consistently, inhibiting gephyrin palmitoylation either pharmacologically or by expression of palmitoylation-deficient gephyrin reduced the gephyrin cluster size. In aggregate, our study reveals that palmitoylation of gephyrin by DHHC-12 contributes to dynamic and functional modulation of GABAergic synapses.


Asunto(s)
Aciltransferasas/fisiología , Proteínas Portadoras/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/fisiología , Receptores de GABA-A/metabolismo , Sinapsis/fisiología , Animales , Cisteína/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ácido gamma-Aminobutírico
6.
Ann Neurol ; 77(6): 972-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25726841

RESUMEN

OBJECTIVE: To test whether mutations in γ-aminobutyric acid type A receptor (GABAA -R) subunit genes contribute to the etiology of rolandic epilepsy (RE) or its atypical variants (ARE). METHODS: We performed exome sequencing to compare the frequency of variants in 18 GABAA -R genes in 204 European patients with RE/ARE versus 728 platform-matched controls. Identified GABRG2 variants were functionally assessed for protein stability, trafficking, postsynaptic clustering, and receptor function. RESULTS: Of 18 screened GABAA -R genes, we detected an enrichment of rare variants in the GABRG2 gene in RE/ARE patients (5 of 204, 2.45%) in comparison to controls (1 of 723, 0.14%; odds ratio = 18.07, 95% confidence interval = 2.01-855.07, p = 0.0024, pcorr = 0.043). We identified a GABRG2 splice variant (c.549-3T>G) in 2 unrelated patients as well as 3 nonsynonymous variations in this gene (p.G257R, p.R323Q, p.I389V). Functional assessment showed reduced surface expression of p.G257R and decreased GABA-evoked currents for p.R323Q. The p.G257R mutation displayed diminished levels of palmitoylation, a post-translational modification crucial for trafficking of proteins to the cell membrane. Enzymatically raised palmitoylation levels restored the surface expression of the p.G257R variant γ2 subunit. INTERPRETATION: The statistical association and the functional evidence suggest that mutations of the GABRG2 gene may increase the risk of RE/ARE. Restoring the impaired membrane trafficking of some GABRG2 mutations by enhancing palmitoylation might be an interesting therapeutic approach to reverse the pathogenic effect of such mutants.


Asunto(s)
Epilepsia Rolándica/genética , Lipoilación/genética , Mutación/genética , Receptores de GABA-A/genética , Exoma , Femenino , Células HEK293 , Humanos , Síndrome de Landau-Kleffner/genética , Masculino , Linaje , Síndrome , Población Blanca/genética
7.
J Neurosci ; 34(23): 7763-8, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899700

RESUMEN

Gephyrin, the principal scaffolding protein at inhibitory synapses, is essential for postsynaptic clustering of glycine and GABA type A receptors (GABA(A)Rs). Gephyrin cluster formation, which determines the strength of GABAergic transmission, is modulated by interaction with signaling proteins and post-translational modifications. Here, we show that gephyrin was found to be associated with neuronal nitric oxide synthase (nNOS), the major source of the ubiquitous and important signaling molecule NO in brain. Furthermore, we identified that gephyrin is S-nitrosylated in vivo. Overexpression of nNOS decreased the size of postsynaptic gephyrin clusters in primary hippocampal neurons. Conversely, inhibition of nNOS resulted in a loss of S-nitrosylation of gephyrin and the formation of larger gephyrin clusters at synaptic sites, ultimately increasing the number of cell surface expressed synaptic GABA(A)Rs. In conclusion, S-nitrosylation of gephyrin is important for homeostatic assembly and plasticity of GABAergic synapses.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Línea Celular Transformada , Cisteína/análogos & derivados , Cisteína/metabolismo , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Ratones , Óxido Nítrico Sintasa de Tipo I/genética , Terminales Presinápticos/metabolismo , Receptores de GABA-A/metabolismo , S-Nitrosotioles/metabolismo , Transfección , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
8.
Neurobiol Dis ; 67: 88-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24561070

RESUMEN

Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine and γ-aminobutyric acid type-A receptors (GABAARs) at inhibitory synapses. An impairment of GABAergic synaptic inhibition represents a key pathway of epileptogenesis. Recently, exonic microdeletions in the gephyrin (GPHN) gene have been associated with neurodevelopmental disorders including autism spectrum disorder, schizophrenia and epileptic seizures. Here we report the identification of novel exonic GPHN microdeletions in two patients with idiopathic generalized epilepsy (IGE), representing the most common group of genetically determined epilepsies. The identified GPHN microdeletions involve exons 5-9 (Δ5-9) and 2-3 (Δ2-3), both affecting the gephyrin G-domain. Molecular characterization of the GPHN Δ5-9 variant demonstrated that it perturbs the clustering of regular gephyrin at inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative manner, resulting in a significant loss of γ2-subunit containing GABAARs. GPHN Δ2-3 causes a frameshift resulting in a premature stop codon (p.V22Gfs*7) leading to haplo-insufficiency of the gene. Our results demonstrate that structural exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor for IGE and other neuropsychiatric disorders by an impairment of the GABAergic inhibitory synaptic transmission.


Asunto(s)
Proteínas Portadoras/genética , Epilepsia Generalizada/genética , Exones/genética , Neuronas GABAérgicas/metabolismo , Proteínas de la Membrana/genética , Eliminación de Secuencia , Sinapsis/metabolismo , Adulto , Femenino , Humanos , Masculino , Linaje , ARN Mensajero/metabolismo , Factores de Riesgo , Adulto Joven
9.
Nat Rev Drug Discov ; 23(1): 23-42, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012296

RESUMEN

Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Sinapsis/metabolismo , Transducción de Señal , Plasticidad Neuronal
10.
Cell Rep ; 42(5): 112497, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37171958

RESUMEN

Synaptic dysfunction is implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BP). We use quantitative mass spectrometry to carry out deep, unbiased proteomic profiling of synapses purified from the dorsolateral prefrontal cortex of 35 cases of SCZ, 35 cases of BP, and 35 controls. Compared with controls, SCZ and BP synapses show substantial and similar proteomic alterations. Network analyses reveal upregulation of proteins associated with autophagy and certain vesicle transport pathways and downregulation of proteins related to synaptic, mitochondrial, and ribosomal function in the synapses of individuals with SCZ or BP. Some of the same pathways are similarly dysregulated in the synaptic proteome of mutant mice deficient in Akap11, a recently discovered shared risk gene for SCZ and BP. Our work provides biological insights into molecular dysfunction at the synapse in SCZ and BP and serves as a resource for understanding the pathophysiology of these disorders.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Ratones , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Modelos Animales de Enfermedad
11.
Nat Neurosci ; 26(3): 430-446, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732642

RESUMEN

Complex diseases are characterized by spatiotemporal cellular and molecular changes that may be difficult to comprehensively capture. However, understanding the spatiotemporal dynamics underlying pathology can shed light on disease mechanisms and progression. Here we introduce STARmap PLUS, a method that combines high-resolution spatial transcriptomics with protein detection in the same tissue section. As proof of principle, we analyze brain tissues of a mouse model of Alzheimer's disease at 8 and 13 months of age. Our approach provides a comprehensive cellular map of disease progression. It reveals a core-shell structure where disease-associated microglia (DAM) closely contact amyloid-ß plaques, whereas disease-associated astrocyte-like (DAA-like) cells and oligodendrocyte precursor cells (OPCs) are enriched in the outer shells surrounding the plaque-DAM complex. Hyperphosphorylated tau emerges mainly in excitatory neurons in the CA1 region and correlates with the local enrichment of oligodendrocyte subtypes. The STARmap PLUS method bridges single-cell gene expression profiles with tissue histopathology at subcellular resolution, providing a tool to pinpoint the molecular and cellular changes underlying pathology.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Modelos Animales de Enfermedad , Péptidos beta-Amiloides , Astrocitos , Placa Amiloide , Precursor de Proteína beta-Amiloide , Ratones Transgénicos , Encéfalo
12.
Sci Transl Med ; 15(689): eadf0141, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989373

RESUMEN

Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.


Asunto(s)
Demencia Frontotemporal , Microglía , Humanos , Ratones , Animales , Anciano , Microglía/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Sinapsis/metabolismo , Proteínas del Sistema Complemento/metabolismo
13.
Neuron ; 111(21): 3378-3396.e9, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657442

RESUMEN

A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.


Asunto(s)
Dopamina , Proteómica , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Encéfalo/metabolismo , Dopamina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Modelos Animales de Enfermedad , Receptores de N-Metil-D-Aspartato/genética
14.
Nat Aging ; 2(9): 837-850, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-37118504

RESUMEN

Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in TauP301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in TauP301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in TauP301S mice and rescued synapse density. Finally, in an AD mouse model that combines ß-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Complemento C1q/genética , Microglía/metabolismo , Astrocitos/metabolismo , Sinapsis/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
15.
Cell Rep ; 28(8): 2111-2123.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433986

RESUMEN

Complement pathway overactivation can lead to neuronal damage in various neurological diseases. Although Alzheimer's disease (AD) is characterized by ß-amyloid plaques and tau tangles, previous work examining complement has largely focused on amyloidosis models. We find that glial cells show increased expression of classical complement components and the central component C3 in mouse models of amyloidosis (PS2APP) and more extensively tauopathy (TauP301S). Blocking complement function by deleting C3 rescues plaque-associated synapse loss in PS2APP mice and ameliorates neuron loss and brain atrophy in TauP301S mice, improving neurophysiological and behavioral measurements. In addition, C3 protein is elevated in AD patient brains, including at synapses, and levels and processing of C3 are increased in AD patient CSF and correlate with tau. These results demonstrate that complement activation contributes to neurodegeneration caused by tau pathology and suggest that blocking C3 function might be protective in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Amiloidosis/inmunología , Complemento C3/metabolismo , Degeneración Nerviosa/inmunología , Tauopatías/inmunología , Enfermedad de Alzheimer/genética , Animales , Atrofia , Conducta Animal , Biomarcadores/metabolismo , Encéfalo/patología , Complemento C1q/metabolismo , Complemento C3/líquido cefalorraquídeo , Complemento C3/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Degeneración Nerviosa/genética , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/metabolismo , Sinapsis/metabolismo
16.
Neuron ; 100(6): 1322-1336.e7, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30392797

RESUMEN

Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.


Asunto(s)
Anticuerpos/uso terapéutico , Complemento C1q/inmunología , Sinapsis/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Complemento C1q/metabolismo , Complemento C1q/ultraestructura , Embrión de Mamíferos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Densidad Postsináptica/metabolismo , Densidad Postsináptica/patología , Densidad Postsináptica/ultraestructura , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Proteoma/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Tauopatías/diagnóstico por imagen , Tauopatías/genética , Proteínas tau/genética
17.
J Clin Invest ; 127(12): 4365-4378, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106383

RESUMEN

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.


Asunto(s)
Señalización del Calcio , Cisteína/análogos & derivados , Neuronas GABAérgicas/metabolismo , Errores Innatos del Metabolismo de los Metales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cisteína/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/patología , Células HEK293 , Humanos , Memantina/farmacología , Errores Innatos del Metabolismo de los Metales/tratamiento farmacológico , Errores Innatos del Metabolismo de los Metales/patología , Ratones , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Compuestos Organofosforados/farmacología , Pterinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/metabolismo , Sinapsis/patología , Compuestos de Tungsteno/toxicidad
18.
PLoS One ; 11(3): e0150426, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26990884

RESUMEN

OBJECTIVE: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. METHODS: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. RESULTS AND INTERPRETATION: We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.


Asunto(s)
Epilepsia/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.1/genética , Sustitución de Aminoácidos , Estudios de Casos y Controles , Epilepsia/epidemiología , Femenino , Humanos , Masculino , Factores de Riesgo , Síndrome
19.
EMBO Mol Med ; 7(12): 1580-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26613940

RESUMEN

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Epilepsia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Coenzimas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Humanos , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Pteridinas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA