Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genes Dev ; 35(13-14): 1035-1054, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168040

RESUMEN

G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.


Asunto(s)
Cromosomas Humanos X , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas , ARN Largo no Codificante , Femenino , Histonas/metabolismo , Humanos , Metiltransferasas/genética , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
2.
Cell ; 153(7): 1537-51, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23791181

RESUMEN

In mammals, dosage compensation between XX and XY individuals occurs through X chromosome inactivation (XCI). The noncoding Xist RNA is expressed and initiates XCI only when more than one X chromosome is present. Current models invoke a dependency on the X-to-autosome ratio (X:A), but molecular factors remain poorly defined. Here, we demonstrate that molecular titration between an X-encoded RNA and an autosomally encoded protein dictates Xist induction. In pre-XCI cells, CTCF protein represses Xist transcription. At the onset of XCI, Jpx RNA is upregulated, binds CTCF, and extricates CTCF from one Xist allele. We demonstrate that CTCF is an RNA-binding protein and is titrated away from the Xist promoter by Jpx RNA. Thus, Jpx activates Xist by evicting CTCF. The functional antagonism via molecular titration reveals a role for long noncoding RNA in epigenetic regulation.


Asunto(s)
ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Regulación hacia Arriba , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Cromosoma X/metabolismo
3.
Mol Cell ; 57(2): 361-75, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25578877

RESUMEN

CTCF is a master regulator that plays important roles in genome architecture and gene expression. How CTCF is recruited in a locus-specific manner is not fully understood. Evidence from epigenetic processes, such as X chromosome inactivation (XCI), indicates that CTCF associates functionally with RNA. Using genome-wide approaches to investigate the relationship between its RNA interactome and epigenomic landscape, here we report that CTCF binds thousands of transcripts in mouse embryonic stem cells, many in close proximity to CTCF's genomic binding sites. CTCF is a specific and high-affinity RNA-binding protein (Kd < 1 nM). During XCI, CTCF differentially binds the active and inactive X chromosomes and interacts directly with Tsix, Xite, and Xist RNAs. Tsix and Xite RNAs target CTCF to the X inactivation center, thereby inducing homologous X chromosome pairing. Our work elucidates one mechanism by which CTCF is recruited in a locus-specific manner and implicates CTCF-RNA interactions in long-range chromosomal interactions.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Cromosoma X/genética , Animales , Factor de Unión a CCCTC , Células Cultivadas , Emparejamiento Cromosómico , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Sitios Genéticos , Ratones , Unión Proteica
4.
MAbs ; 15(1): 2195517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074212

RESUMEN

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing. We named the resulting molecules stapled scFv (spFv). Stapling increased thermal stability (Tm) by an average of 10°C. In multiple scFv/spFv multispecifics, the spFv molecules display significantly improved stability, minimal aggregation and superior product quality. These spFv multispecifics retain binding affinity and functionality. Our stapling design was compatible with all antibody variable regions we evaluated and may be widely applicable to stabilize scFv molecules for designing biotherapeutics with superior biophysical properties.


Asunto(s)
Anticuerpos , Región Variable de Inmunoglobulina , Región Variable de Inmunoglobulina/química , Fragmentos de Inmunoglobulinas
5.
Nat Cell Biol ; 22(9): 1116-1129, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807903

RESUMEN

How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing "BioRBP", an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X-X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Transactivadores/metabolismo , Cromosoma X/metabolismo , Alelos , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología , Inactivación del Cromosoma X/fisiología
6.
J Cell Biol ; 163(2): 283-93, 2003 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-14568989

RESUMEN

The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy.


Asunto(s)
Señalización del Calcio/fisiología , Ácido Egtácico/análogos & derivados , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/fisiología , Animales , Compuestos de Boro/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Chlorocebus aethiops , Cricetinae , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Proteínas Inmediatas-Precoces/efectos de los fármacos , Proteínas Inmediatas-Precoces/metabolismo , Cinética , Modelos Biológicos , Nifedipino/farmacología , Fosforilación , Tapsigargina/farmacología , Células Tumorales Cultivadas , Verapamilo/farmacología , Células Vero
7.
Elife ; 82019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30676316

RESUMEN

The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo-like kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fase G2 , Mitosis , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factor de Unión a CCCTC/química , Quinasa de la Caseína II/metabolismo , Proliferación Celular , Cromatina , Secuencia Conservada , ADN/metabolismo , Análisis Mutacional de ADN , Humanos , Interfase , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Fosforilación , Ploidias , Unión Proteica , ARN/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Quinasa Tipo Polo 1
8.
Mol Cell Biol ; 25(5): 1764-78, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15713633

RESUMEN

The nuclear import of histones is a prerequisite for the downstream deposition of histones to form chromatin. However, the coordinate regulation of these processes remains poorly understood. Here we demonstrate that Kap114p, the primary karyopherin/importin responsible for the nuclear import of histones H2A and H2B, modulates the deposition of histones H2A and H2B by the histone chaperone Nap1p. We show that a complex comprising Kap114p, histones H2A and H2B, and Nap1p is present in the nucleus and that the presence of this complex is specifically promoted by Nap1p. This places Kap114p in a position to modulate Nap1p function, and we demonstrate by the use of two different assay systems that Kap114p inhibits Nap1p-mediated chromatin assembly. The inhibition of H2A and H2B deposition by Kap114p results in the concomitant inhibition of RCC1 loading onto chromatin. Biochemical evidence suggests that the mechanism by which Kap114p modulates histone deposition primarily involves direct histone binding, while the interaction between Kap114p and Nap1p plays a secondary role. Furthermore, we found that the inhibition of histone deposition by Kap114p is partially reversed by RanGTP. Our results indicate a novel mechanism by which cells can regulate histone deposition and establish a coordinate link between histone nuclear import and chromatin assembly.


Asunto(s)
Histonas/metabolismo , Carioferinas/fisiología , Proteínas Nucleares/fisiología , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Animales , Proteínas de Ciclo Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Histonas/antagonistas & inhibidores , Masculino , Modelos Biológicos , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas , Mutación Puntual/genética , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína/fisiología , Proteínas/análisis , Proteínas/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermatozoides/química , Xenopus laevis , beta Carioferinas , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/fisiología
9.
Dev Cell ; 43(3): 359-371.e6, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107559

RESUMEN

X-chromosome inactivation (XCI) silences one X chromosome in the female mammal and is essential to peri-implantation development. XCI is thought to be cell autonomous, with all factors required being produced within each cell. Nevertheless, external cues may exist. Here, we search for such developmental signals by combining bioinformatic, biochemical, and genetic approaches. Using ex vivo and in vivo models, we identify the Hedgehog (HH) paracrine system as a candidate signaling cascade. HH signaling keeps XCI in check in pluripotent cells and is transduced by GLI transcription factors to binding sites in Tsix, the antisense repressor of XCI. GLI potentiates Tsix expression and impedes XCI. In vivo, mutating Indian Hedgehog results in a sex ratio bias against females, and the female lethality is rescued by a second-site mutation in Tsix. These data demonstrate a genetic and functional intersection between HH and XCI and support a role for intercellular signaling during XCI.


Asunto(s)
Proteínas Hedgehog/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Animales , Diferenciación Celular/fisiología , Femenino , Ratones Noqueados , Factores de Transcripción/metabolismo , Transcripción Genética/genética
10.
Mol Cell Biol ; 33(8): 1645-56, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23401858

RESUMEN

Histone chaperones function in chromatin assembly and disassembly, suggesting they have important regulatory roles in transcription elongation. The Saccharomyces cerevisiae proteins Nap1 and Vps75 are structurally related, evolutionarily conserved histone chaperones. We showed that Nap1 genetically interacts with several transcription elongation factors and that both Nap1 and Vps75 interact with the RNA polymerase II kinase, CTK1. Loss of NAP1 or VPS75 suppressed cryptic transcription within the open reading frame (ORF) observed when strains are deleted for the kinase CTK1. Loss of the histone acetyltransferase Rtt109 also suppressed ctk1-dependent cryptic transcription. Vps75 regulates Rtt109 function, suggesting that they function together in this process. Histone H3 K9 was found to be the important lysine that is acetylated by Rtt109 during ctk1-dependent cryptic transcription. We showed that both Vps75 and Nap1 regulate the relative level of H3 K9 acetylation in the STE11 ORF. This supports a model in which Nap1, like Vps75, directly regulates Rtt109 activity or regulates the assembly of acetylated chromatin. Although Nap1 and Vps75 share many similarities, due to their distinct interactions with SET2, Nap1 and Vps75 may also play separate roles during transcription elongation. This work sheds further light on the importance of histone chaperones as general regulators of transcription elongation.


Asunto(s)
Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Ensamble y Desensamble de Cromatina , Histona Acetiltransferasas/genética , Chaperonas de Histonas , Histonas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metiltransferasas/metabolismo , Chaperonas Moleculares/genética , Proteína 1 de Ensamblaje de Nucleosomas/genética , Sistemas de Lectura Abierta , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
11.
Genetics ; 192(3): 857-68, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22942124

RESUMEN

In the early mammalian embryo, X chromosome inactivation (XCI) achieves dosage parity between males and females for X-linked genes. During mouse development, imprinted paternal XCI is observed first and switches to random XCI in the epiblast but not placental lineages. The mechanism by which this epigenetic switch occurs is currently unknown. Here, we establish an ex vivo model for imprinting and identify a novel trans-acting regulatory factor for imprinted XCI. Using an induced trophoblast stem cell (iTS) model, we show that embryonic stem (ES) cells transdifferentiated into trophoblasts retain partial memory of the XCI imprint. Cdx2, a stem cell factor that determines commitment to the extraembryonic lineage, directly binds Xist and activates expression of Xist RNA in extrembryonic cells. Cdx2 competes with Oct4, a stem cell factor that determines commitment to the embryonic lineage, for overlapping binding sites within Xist. We propose that mutually exclusive binding between Cdx2 and Oct4 in Xist underlies the switch between imprinted and random XCI in the early mouse embryo.


Asunto(s)
Impresión Genómica , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Factor de Transcripción CDX2 , Células Madre Embrionarias/metabolismo , Femenino , Proteínas de Homeodominio/genética , Intrones , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Unión Proteica , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Transgenes , Trofoblastos/metabolismo
12.
Genetics ; 189(2): 441-54, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21840866

RESUMEN

In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.


Asunto(s)
Cromatina/genética , Elementos Aisladores/genética , ARN no Traducido/genética , Proteínas Represoras/genética , Inactivación del Cromosoma X , Animales , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Femenino , Expresión Génica , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones de la Cepa 129 , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN Largo no Codificante , ARN no Traducido/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
13.
Mol Cell Biol ; 28(7): 2113-24, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18227150

RESUMEN

Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Deltanap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas Nucleares/fisiología , Transporte de ARN/fisiología , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología , Fosfatasa Ácida , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina/genética , Regulación Fúngica de la Expresión Génica/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/fisiología , Proteína 1 de Ensamblaje de Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Sistemas de Lectura Abierta , Mapeo de Interacción de Proteínas , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Transporte de ARN/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA