RESUMEN
OBJECTIVES: Although hemispheric surgeries are among the most effective procedures for drug-resistant epilepsy (DRE) in the pediatric population, there is a large variability in seizure outcomes at the group level. A recently developed HOPS score provides individualized estimation of likelihood of seizure freedom to complement clinical judgement. The objective of this study was to develop a freely accessible online calculator that accurately predicts the probability of seizure freedom for any patient at 1-, 2-, and 5-years post-hemispherectomy. METHODS: Retrospective data of all pediatric patients with DRE and seizure outcome data from the original Hemispherectomy Outcome Prediction Scale (HOPS) study were included. The primary outcome of interest was time-to-seizure recurrence. A multivariate Cox proportional-hazards regression model was developed to predict the likelihood of post-hemispheric surgery seizure freedom at three time points (1-, 2- and 5- years) based on a combination of variables identified by clinical judgment and inferential statistics predictive of the primary outcome. The final model from this study was encoded in a publicly accessible online calculator on the International Network for Epilepsy Surgery and Treatment (iNEST) website (https://hops-calculator.com/). RESULTS: The selected variables for inclusion in the final model included the five original HOPS variables (age at seizure onset, etiologic substrate, seizure semiology, prior non-hemispheric resective surgery, and contralateral fluorodeoxyglucose-positron emission tomography [FDG-PET] hypometabolism) and three additional variables (age at surgery, history of infantile spasms, and magnetic resonance imaging [MRI] lesion). Predictors of shorter time-to-seizure recurrence included younger age at seizure onset, prior resective surgery, generalized seizure semiology, FDG-PET hypometabolism contralateral to the side of surgery, contralateral MRI lesion, non-lesional MRI, non-stroke etiologies, and a history of infantile spasms. The area under the curve (AUC) of the final model was 73.0%. SIGNIFICANCE: Online calculators are useful, cost-free tools that can assist physicians in risk estimation and inform joint decision-making processes with patients and families, potentially leading to greater satisfaction. Although the HOPS data was validated in the original analysis, the authors encourage external validation of this new calculator.
Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Espasmos Infantiles , Niño , Humanos , Hemisferectomía/métodos , Espasmos Infantiles/cirugía , Estudios Retrospectivos , Fluorodesoxiglucosa F18 , Resultado del Tratamiento , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Convulsiones/diagnóstico , Convulsiones/etiología , Convulsiones/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética , ElectroencefalografíaRESUMEN
OBJECTIVE: Benchmarking has been proposed to reflect surgical quality and represents the highest standard reference values for desirable results. We sought to determine benchmark outcomes in patients after surgery for drug-resistant mesial temporal lobe epilepsy (MTLE). METHODS: This retrospective multicenter study included patients who underwent MTLE surgery at 19 expert centers on five continents. Benchmarks were defined for 15 endpoints covering surgery and epilepsy outcome at discharge, 1 year after surgery, and the last available follow-up. Patients were risk-stratified by applying outcome-relevant comorbidities, and benchmarks were calculated for low-risk ("benchmark") cases. Respective measures were derived from the median value at each center, and the 75th percentile was considered the benchmark cutoff. RESULTS: A total of 1119 patients with a mean age (range) of 36.7 (1-74) years and a male-to-female ratio of 1:1.1 were included. Most patients (59.2%) underwent anterior temporal lobe resection with amygdalohippocampectomy. The overall rate of complications or neurological deficits was 14.4%, with no in-hospital death. After risk stratification, 377 (33.7%) benchmark cases of 1119 patients were identified, representing 13.6%-72.9% of cases per center and leaving 742 patients in the high-risk cohort. Benchmark cutoffs for any complication, clinically apparent stroke, and reoperation rate at discharge were ≤24.6%, ≤.5%, and ≤3.9%, respectively. A favorable seizure outcome (defined as International League Against Epilepsy class I and II) was reached in 83.6% at 1 year and 79.0% at the last follow-up in benchmark cases, leading to benchmark cutoffs of ≥75.2% (1-year follow-up) and ≥69.5% (mean follow-up of 39.0 months). SIGNIFICANCE: This study presents internationally applicable benchmark outcomes for the efficacy and safety of MTLE surgery. It may allow for comparison between centers, patient registries, and novel surgical and interventional techniques.
Asunto(s)
Benchmarking , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Estudios Retrospectivos , Anciano , Resultado del Tratamiento , Niño , Preescolar , Lactante , Complicaciones Posoperatorias/epidemiología , Procedimientos Neuroquirúrgicos/normas , Procedimientos Neuroquirúrgicos/métodos , Epilepsia Refractaria/cirugía , Lobectomía Temporal Anterior/métodosRESUMEN
Drug-resistant mesial-temporal lobe epilepsy is a devastating disease with seizure onset in the hippocampal formation. A fraction of hippocampi samples from epilepsy-surgical procedures reveals a peculiar histological pattern referred to as 'gliosis only' with unresolved pathogenesis and enigmatic sequelae. Here, we hypothesize that 'gliosis only' represents a particular syndrome defined by distinct clinical and molecular characteristics. We curated an in-depth multiparameter integration of systematic clinical, neuropsychological as well as neuropathological analysis from a consecutive cohort of 627 patients, who underwent hippocampectomy for drug-resistant temporal lobe epilepsy. All patients underwent either classic anterior temporal lobectomy or selective amygdalohippocampectomy. On the basis of their neuropathological exam, patients with hippocampus sclerosis and 'gliosis only' were characterized and compared within the whole cohort and within a subset of matched pairs. Integrated transcriptional analysis was performed to address molecular differences between both groups. 'Gliosis only' revealed demographics, clinical and neuropsychological outcome fundamentally different from hippocampus sclerosis. 'Gliosis only' patients had a significantly later seizure onset (16.3 versus 12.2 years, P = 0.005) and worse neuropsychological outcome after surgery compared to patients with hippocampus sclerosis. Epilepsy was less amendable by surgery in 'gliosis only' patients, resulting in a significantly worse rate of seizure freedom after surgery in this subgroup (43% versus 68%, P = 0.0001, odds ratio = 2.8, confidence interval 1.7-4.7). This finding remained significant after multivariate and matched-pairs analysis. The 'gliosis only' group demonstrated pronounced astrogliosis and lack of significant neuronal degeneration in contrast to characteristic segmental neuron loss and fibrillary astrogliosis in hippocampus sclerosis. RNA-sequencing of gliosis only patients deciphered a distinct transcriptional programme that resembles an innate inflammatory response of reactive astrocytes. Our data indicate a new temporal lobe epilepsy syndrome for which we suggest the term 'Innate inflammatory gliosis only'. 'Innate inflammatory gliosis only' is characterized by a diffuse gliosis pattern lacking restricted hippocampal focality and is poorly controllable by surgery. Thus, 'innate inflammatory gliosis only' patients need to be clearly identified by presurgical examination paradigms of pharmacoresistant temporal lobe epilepsy patients; surgical treatment of this subgroup should be considered with great precaution. 'Innate inflammatory gliosis only' requires innovative pharmacotreatment strategies.
Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Humanos , Epilepsia del Lóbulo Temporal/patología , Gliosis/patología , Esclerosis/patología , Hipocampo/patología , Lóbulo Temporal/patología , Epilepsia Refractaria/complicaciones , Resultado del TratamientoRESUMEN
BACKGROUND: Gliosis only (GO) and hippocampal sclerosis (HS) are distinct histopathological entities in mesial temporal lobe epilepsy. This study explores whether this distinction also exists on a functional level when evaluating pre- and postoperative memory. METHODS: Using a retrospective matched case-control study design, we analysed verbal and visual memory performance in 49 patients with GO and 49 patients with HS before and one year after elective surgery. RESULTS: Clinical differences were evident with a later age at seizure onset (18±12 vs 12±9 years) and fewer postoperative seizure-free patients in the GO group (63% vs 82%). Preoperatively, group and individual-level data demonstrated that memory impairments were less frequent, less severe and relatively non-specific in patients with GO compared with HS. Postoperatively, verbal memory declined in both groups, particularly after left-sided resections, with more significant losses in patients with GO. Factoring in floor effects, GO was also associated with more significant visual memory loss, particularly after left resections. CONCLUSIONS: Compared with HS, GO is characterised by (1) a later onset of epilepsy, (2) less pronounced and more non-specific memory impairments before surgery, (3) a less successful surgical outcome and (4) a more significant memory decline after surgery. Overall, our results regarding cognition provide further evidence that GO and HS are distinct clinical entities. Functional integrity of the hippocampus appears higher in GO, as indicated by a better preoperative memory performance and worse memory outcome after surgery. The different risk-benefit ratios should be considered during presurgical patient counselling.
RESUMEN
Advancements in population neuroscience are spurred by the availability of large scale, open datasets, such as the Human Connectome Project or recently introduced UK Biobank. With the increasing data availability, analyses of brain imaging data employ more and more sophisticated machine learning algorithms. However, all machine learning algorithms must balance generalization and complexity. As the detail of neuroimaging data leads to high-dimensional data spaces, model complexity and hence the chance of overfitting increases. Different methodological approaches can be applied to alleviate the problems that arise in high-dimensional settings by reducing the original information into meaningful and concise features. One popular approach is dimensionality reduction, which allows to summarize high-dimensional data into low-dimensional representations while retaining relevant trends and patterns. In this paper, principal component analysis (PCA) is discussed as widely used dimensionality reduction method based on current examples of population-based neuroimaging analyses.
Asunto(s)
Algoritmos , Neuroimagen , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Análisis de Componente PrincipalRESUMEN
Advancements in neuroimaging and the availability of large-scale datasets enable the use of more sophisticated machine learning algorithms. In this chapter, we non-exhaustively discuss relevant analytical steps for the analysis of neuroimaging data using machine learning (ML), while the field of radiomics will be addressed separately (c.f., Chap. 18 -Radiomics). Broadly classified into supervised and unsupervised approaches, we discuss the encoding/decoding framework, which is often applied in cognitive neuroscience, and the use of ML for the analysis of unlabeled data using clustering.
Asunto(s)
Aprendizaje Automático , Neuroimagen , Algoritmos , Análisis por ConglomeradosRESUMEN
In the last decades, modern medicine has evolved into a data-centered discipline, generating massive amounts of granular high-dimensional data exceeding human comprehension. With improved computational methods, machine learning and artificial intelligence (AI) as tools for data processing and analysis are becoming more and more important. At the forefront of neuro-oncology and AI-research, the field of radiomics has emerged. Non-invasive assessments of quantitative radiological biomarkers mined from complex imaging characteristics across various applications are used to predict survival, discriminate between primary and secondary tumors, as well as between progression and pseudo-progression. In particular, the application of molecular phenotyping, envisioned in the field of radiogenomics, has gained popularity for both primary and secondary brain tumors. Although promising results have been obtained thus far, the lack of workflow standardization and availability of multicenter data remains challenging. The objective of this review is to provide an overview of novel applications of machine learning- and deep learning-based radiomics in primary and secondary brain tumors and their implications for future research in the field.
Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Estudios Multicéntricos como AsuntoRESUMEN
For almost a century, classical statistical methods including exponential smoothing and autoregression integrated moving averages (ARIMA) have been predominant in the analysis of time series (TS) and in the pursuit of forecasting future events from historical data. TS are chronological sequences of observations, and TS data are therefore prevalent in many aspects of clinical medicine and academic neuroscience. With the rise of highly complex and nonlinear datasets, machine learning (ML) methods have become increasingly popular for prediction or pattern detection and within neurosciences, including neurosurgery. ML methods regularly outperform classical methods and have been successfully applied to, inter alia, predict physiological responses in intracranial pressure monitoring or to identify seizures in EEGs. Implementing nonparametric methods for TS analysis in clinical practice can benefit clinical decision making and sharpen our diagnostic armory.
Asunto(s)
Aprendizaje Automático , Modelos Estadísticos , Predicción , Factores de TiempoRESUMEN
The applications of artificial intelligence (AI) and machine learning (ML) in modern medicine are growing exponentially, and new developments are fast-paced. However, the lack of trust and appropriate legislation hinder its clinical implementation. Recently, there is a clear increase of directives and considerations on Ethical AI. However, most literature broadly deals with ethical tensions on a meta-level without offering hands-on advice in practice. In this article, we non-exhaustively cover basic practical guidelines regarding AI-specific ethical aspects, including transparency and explicability, equity and mitigation of biases, and lastly, liability.
Asunto(s)
Inteligencia Artificial , Aprendizaje AutomáticoRESUMEN
BACKGROUND: Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. METHODS: We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. RESULTS: We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. CONCLUSION: Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas.
Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Anciano , Algoritmos , Colina/metabolismo , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Glicina/metabolismo , Humanos , Masculino , Neoplasias Meníngeas/química , Neoplasias Meníngeas/mortalidad , Meningioma/química , Meningioma/mortalidad , Persona de Mediana Edad , Clasificación del Tumor , Resonancia Magnética Nuclear Biomolecular , Supervivencia sin Progresión , Serina/metabolismo , Resultado del Tratamiento , Triptófano/metabolismoRESUMEN
OBJECTIVE: To develop and validate a model to predict seizure freedom in children undergoing cerebral hemispheric surgery for the treatment of drug-resistant epilepsy. METHODS: We analyzed 1267 hemispheric surgeries performed in pediatric participants across 32 centers and 12 countries to identify predictors of seizure freedom at 3 months after surgery. A multivariate logistic regression model was developed based on 70% of the dataset (training set) and validated on 30% of the dataset (validation set). Missing data were handled using multiple imputation techniques. RESULTS: Overall, 817 of 1237 (66%) hemispheric surgeries led to seizure freedom (median follow-up = 24 months), and 1050 of 1237 (85%) were seizure-free at 12 months after surgery. A simple regression model containing age at seizure onset, presence of generalized seizure semiology, presence of contralateral 18-fluoro-2-deoxyglucose-positron emission tomography hypometabolism, etiologic substrate, and previous nonhemispheric resective surgery is predictive of seizure freedom (area under the curve = .72). A Hemispheric Surgery Outcome Prediction Scale (HOPS) score was devised that can be used to predict seizure freedom. SIGNIFICANCE: Children most likely to benefit from hemispheric surgery can be selected and counseled through the implementation of a scale derived from a multiple regression model. Importantly, children who are unlikely to experience seizure control can be spared from the complications and deficits associated with this surgery. The HOPS score is likely to help physicians in clinical decision-making.
Asunto(s)
Epilepsia Refractaria/cirugía , Hemisferectomía , Resultado del Tratamiento , Edad de Inicio , Niño , Preescolar , Estudios de Cohortes , Epilepsia Refractaria/patología , Epilepsia Refractaria/fisiopatología , Femenino , Humanos , Lactante , Modelos Logísticos , Masculino , Pronóstico , Estudios Retrospectivos , Factores de RiesgoRESUMEN
OBJECTIVE: This study was undertaken to determine whether the vertical parasagittal approach or the lateral peri-insular/peri-Sylvian approach to hemispheric surgery is the superior technique in achieving long-term seizure freedom. METHODS: We conducted a post hoc subgroup analysis of the HOPS (Hemispheric Surgery Outcome Prediction Scale) study, an international, multicenter, retrospective cohort study that identified predictors of seizure freedom through logistic regression modeling. Only patients undergoing vertical parasagittal, lateral peri-insular/peri-Sylvian, or lateral trans-Sylvian hemispherotomy were included in this post hoc analysis. Differences in seizure freedom rates were assessed using a time-to-event method and calculated using the Kaplan-Meier survival method. RESULTS: Data for 672 participants across 23 centers were collected on the specific hemispherotomy approach. Of these, 72 (10.7%) underwent vertical parasagittal hemispherotomy and 600 (89.3%) underwent lateral peri-insular/peri-Sylvian or trans-Sylvian hemispherotomy. Seizure freedom was obtained in 62.4% (95% confidence interval [CI] = 53.5%-70.2%) of the entire cohort at 10-year follow-up. Seizure freedom was 88.8% (95% CI = 78.9%-94.3%) at 1-year follow-up and persisted at 85.5% (95% CI = 74.7%-92.0%) across 5- and 10-year follow-up in the vertical subgroup. In contrast, seizure freedom decreased from 89.2% (95% CI = 86.3%-91.5%) at 1-year to 72.1% (95% CI = 66.9%-76.7%) at 5-year to 57.2% (95% CI = 46.6%-66.4%) at 10-year follow-up for the lateral subgroup. Log-rank test found that vertical hemispherotomy was associated with durable seizure-free progression compared to the lateral approach (p = .01). Patients undergoing the lateral hemispherotomy technique had a shorter time-to-seizure recurrence (hazard ratio = 2.56, 95% CI = 1.08-6.04, p = .03) and increased seizure recurrence odds (odds ratio = 3.67, 95% CI = 1.05-12.86, p = .04) compared to those undergoing the vertical hemispherotomy technique. SIGNIFICANCE: This pilot study demonstrated more durable seizure freedom of the vertical technique compared to lateral hemispherotomy techniques. Further studies, such as prospective expertise-based observational studies or a randomized clinical trial, are required to determine whether a vertical approach to hemispheric surgery provides superior long-term seizure outcomes.
Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Niño , Epilepsia Refractaria/cirugía , Epilepsia/cirugía , Hemisferectomía/métodos , Humanos , Proyectos Piloto , Estudios Prospectivos , Estudios Retrospectivos , Convulsiones/cirugía , Resultado del TratamientoRESUMEN
PURPOSE: PET using radiolabeled amino acid [18F]-fluoro-ethyl-L-tyrosine (FET-PET) is a well-established imaging modality for glioma diagnostics. The biological tumor volume (BTV) as depicted by FET-PET often differs in volume and location from tumor volume of contrast enhancement (CE) in MRI. Our aim was to investigate whether a gross total resection of BTVs defined as < 1 cm3 of residual BTV (PET GTR) correlates with better oncological outcome. METHODS: We retrospectively analyzed imaging and survival data from patients with primary and recurrent WHO grade III or IV gliomas who underwent FET-PET before surgical resection. Tumor overlap between FET-PET and CE was evaluated. Completeness of FET-PET resection (PET GTR) was calculated after superimposition and semi-automated segmentation of pre-operative FET-PET and postoperative MRI imaging. Survival analysis was performed using the Kaplan-Meier method and the log-rank test. RESULTS: From 30 included patients, PET GTR was achieved in 20 patients. Patients with PET GTR showed improved median OS with 19.3 compared to 13.7 months for patients with residual FET uptake (p = 0.007; HR 0.3; 95% CI 0.12-0.76). This finding remained as independent prognostic factor after performing multivariate analysis (HR 0.19, 95% CI 0.06-0.62, p = 0.006). Other survival influencing factors such as age, IDH-mutation, MGMT promotor status, and adjuvant treatment modalities were equally distributed between both groups. CONCLUSION: Our results suggest that PET GTR improves the OS in patients with WHO grade III or IV gliomas. A multimodal imaging approach including FET-PET for surgical planning in newly diagnosed and recurrent tumors may improve the oncological outcome in glioma patients.
Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Glioblastoma , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/cirugía , Humanos , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos , Tirosina , Organización Mundial de la SaludRESUMEN
Deep brain stimulation (DBS) is a complex surgical procedure that requires detailed anatomical knowledge. In many fields of neurosurgery navigation systems are used to display anatomical structures during an operation to aid performing these surgeries. In frame-based DBS, the advantage of visualization has not yet been evaluated during the procedure itself. In this study, we added live visualization to a frame-based DBS system, using a standard navigation system and investigated its accuracy and potential use in DBS surgery. As a first step, a phantom study was conducted to investigate the accuracy of the navigation system in conjunction with a frame-based approach. As a second step, 5 DBS surgeries were performed with this combined approach. Afterwards, 3 neurosurgeons and 2 neurologists with different levels of experience evaluated the potential use of the system with a questionnaire. Moreover, the additional personnel, costs and required set up time were noted and compared to 5 consecutive standard procedures. In the phantom study, the navigation system showed an inaccuracy of 2.1 mm (mean SD 0.69 mm). In the questionnaire, a mean of 9.4/10 points was awarded for the use of the combined approach as a teaching tool, a mean of 8.4/10 for its advantage in creating a 3-dimensional (3-D) map and a mean of 8/10 points for facilitating group discussions. Especially neurosurgeons and neurologists in training found it useful to better interpret clinical results and side effects (mean 9/10 points) and neurosurgeons appreciated its use to better interpret microelectrode recordings (mean 9/10 points). A mean of 6/10 points was awarded when asked if the benefits were worth the additional efforts. Initially 2 persons, then one additional person was required to set up the system with no relevant added time or costs. Using a navigation system for live visualization during frame-based DBS surgery can improve the understanding of the complex 3-D anatomy and many aspects of the procedure itself. For now, we would regard it as an excellent teaching tool rather than a necessity to perform DBS surgeries.
Asunto(s)
Estimulación Encefálica Profunda/normas , Neuronavegación/normas , Neurocirujanos/normas , Técnicas Estereotáxicas/normas , Estimulación Encefálica Profunda/métodos , Electrodos Implantados/normas , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Masculino , Microelectrodos/normas , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/cirugía , Neuronavegación/métodos , Procedimientos Neuroquirúrgicos/métodos , Procedimientos Neuroquirúrgicos/normas , Fantasmas de Imagen/normasRESUMEN
BACKGROUND: Glioblastoma of the corpus callosum (ccGBM) are rare tumors, with a dismal prognosis marked by a rapid clinical deterioration. For a long time, surgical treatment was not considered beneficial for most patients with such tumors. Recent studies claimed an improved survival for patients undergoing extensive resection, albeit without integration of the molecular profile of the lesions. The purpose of this study was to investigate the effect of biopsy and surgical resection on oncological and functional outcomes in patients with IDH wild-type ccGBM. METHODS: We performed a retrospective analysis of our institution's database of patients having been treated for high-grade glioma between 2005 and 2017. Inclusion criteria were defined as follows: patients older than 18 years, histopathological, and molecularly defined IDH wild-type glioma, major tumor mass (at least 2/3) invading the corpus callosum in the sagittal plane with a uni- or bilateral infiltration of the adjacent lobules. Surgical therapy (resection vs. biopsy), extent of resection according to the remaining tumor volume and adjuvant treatment as well as overall survival and functional outcome using the Karnofsky Performance Score (KPS) were analyzed. RESULTS: Fifty-five patients were included in the study, from which the mean age was 64 years and men (n = 34, 61.8%) were more often affected than women (n = 21, 38.2%). Thirty (54.5%) patients were treated with stereotactic biopsy alone, while 25 patients received tumor resection resulting in 14.5% (n = 8) gross-total resections and 30.9% (n = 17) partial resections. The 2-year survival rate after resection was 30% compared to 7% after biopsy (p = 0.047). The major benefit was achieved in the group with gross-total resection, while partial resection failed to improve survival. Neurological outcome measured by KPS did not differ between both groups either pre- or postoperatively. CONCLUSIONS: Our study suggests that in patients with corpus callosum glioblastoma, gross-total resection prolongs survival without negatively impacting neurological outcome as compared to biopsy.
Asunto(s)
Neoplasias Encefálicas/cirugía , Cuerpo Calloso/patología , Glioma/cirugía , Complicaciones Posoperatorias/epidemiología , Adulto , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cuerpo Calloso/cirugía , Femenino , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Estado de Ejecución de Karnofsky , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos/efectos adversos , Procedimientos Neuroquirúrgicos/métodos , Carga TumoralRESUMEN
Resting-state functional MRI (rs-fMRI) allows mapping temporally coherent brain networks, and intra- and inter-network alterations have been described in different diseases. This prospective study investigated hemispheric resting-state functional connectivity (RSFC) differences in the default-mode network (DMN) and fronto-parietal network (FPN) between patients with left- and right-hemispheric gliomas (LH PAT, RH PAT), addressing asymmetry effects the tumor might have on network-specific intrinsic functional connectivity under consideration of the prognostically relevant isocitrate-dehydrogenase (IDH) mutation status. Twenty-seven patients (16 LH PAT, 12 IDH-wildtype) and 27 healthy controls underwent anatomical and rs-fMRI as well as neuropsychological assessment. Independent component analyses were performed to identify the DMN and FPN. Hemispheric DMN- and FPN-RSFC were computed, compared across groups, and correlated with cognitive performance. Patient groups did not differ in tumor volume, grade or location. RH PAT showed higher contra-tumoral DMN-RSFC than controls and LH PAT. With regard to the FPN, contra-tumoral RSFC was increased in both patient groups as compared to controls. Higher contra-tumoral RSFC was associated with worse cognitive performance in patients, which, however, seemed to apply mainly to IDH-wildtype patients. The benefit of RSFC alterations for cognitive performance varied depending on the affected hemisphere, cognitive demand, and seemed to be altered by IDH-mutation status. At the time of study initiation, a clinical trial registration was not mandatory at our faculty, but it can be applied for if requested.
Asunto(s)
Neoplasias Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma , Red en Modo Predeterminado/fisiopatología , Glioma/fisiopatología , Imagen por Resonancia Magnética , Adulto , Anciano , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/patología , Femenino , Glioma/complicaciones , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa , Pruebas NeuropsicológicasRESUMEN
BACKGROUND: Oligodendroglioma (ODG) are CNS resistant tumors characterized by their unique molecular signature, namely a combined deletion of 1p and 19q simultaneously to an IDH1/2 mutation. These tumors have a more favorable clinical outcome compared to other gliomas and a long-time survival that ranges between 10 and 20 years. However, during the course of the disease, multiple recurrences occur and the optimal treatment at each stage of the disease remains unclear. Here we report a retrospective longitudinal observation study of 836 MRI examinations in 44 ODG patients. METHODS: We quantified the volume of T2-hyperintensity to compute growth behavior in dependence of different treatment modalities, using various computational models. RESULTS: The identified growth pattern revealed dynamic changes, which were found to be patient-specific an did not correlate with clinical parameter or therapeutic interventions. Further, we showed that, surgical resection is beneficial for overall survival regardless the WHO grad or timepoint of surgery. To improve overall survival, an extent of resection above 50% is required. Multiple resections do not generally improve overall survival, except a greater extent of resection than in previous surgeries was achieved. CONCLUSIONS: Our data aids to improve the interpretation of MRI images in clinical practice.
Asunto(s)
Astrocitoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Oligodendroglioma/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Astrocitoma/genética , Neoplasias Encefálicas/genética , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Femenino , Estudios de Seguimiento , Humanos , Isocitrato Deshidrogenasa/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia/genética , Estadificación de Neoplasias , Oligodendroglioma/genética , Estudios RetrospectivosRESUMEN
INTRODUCTION: Elderly patients constitute an expanding part of our society. Due to a continuously increasing life expectancy, an optimal quality of life is expected even into advanced age. Glioblastoma (GBM) is more common in older patients, but they are still often withheld from efficient treatment due to worry of worse tolerance and have a significantly worse prognosis compared to younger patients. Our retrospective observational study aimed to investigate the therapeutic benefit from a second resection in recurrent glioblastoma of elderly patients. MATERIALS AND METHODS: We included a cohort of 39 elderly patients (> 65 years) with a second resection as treatment option in the case of a tumor recurrence. A causal inference model was built by multiple non- and semiparametric models, which was used to identify matched patients from our elderly GBM database which comprises 538 patients. The matched cohorts were analyzed by a Cox-regression model adjusted by time-dependent covariates. RESULTS: The Cox-regression analysis showed a significant survival benefit (Hazard Ratio: 0.6, 95% CI 0.36-0.9, p-value = 0.0427) for the re-resected group (18.0 months, 95% CI 13.97-23.2 months) compared to the group without re-resection (10.1 months, 95% CI 8.09-20.9 months). No differences in the co-morbidities or hemato-oncological side effects during chemotherapy could be detected. Anesthetic- and surgical complications were rare and comparable to the complication rate of patients undergoing the first-line resection. CONCLUSION: Taken together, in elderly patients, re-resection is an acceptable treatment option in the recurrent state of a glioblastoma. The individual evaluation of the patients' medical status as well as the chances of withstanding general anesthesia needs to be done in close interdisciplinary consultation. If these requirements are met, elderly patients benefit from a re-resection.
Asunto(s)
Neoplasias Encefálicas/mortalidad , Glioblastoma/mortalidad , Recurrencia Local de Neoplasia/mortalidad , Procedimientos Neuroquirúrgicos/mortalidad , Calidad de Vida , Reoperación/mortalidad , Anciano , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Reoperación/métodos , Estudios Retrospectivos , Tasa de SupervivenciaRESUMEN
INTRODUCTION: Health related quality of life (HRQoL) has become a pivotal outcome parameter after surgery for drug-resistant epilepsy. The aim of the study was to investigate HRQoL and its relationship to seizure outcome, neurological deficits and anxiety after epilepsy surgery in a specific subpopulation of elderly patients. METHODS: A total of 85 elderly patients (older than 50â¯years) answered a standardized HRQoL questionnaire one year after epilepsy surgery. The questionnaire addressed the present self-assessed HRQoL in four subdomains (physical function, cognitive function, mood, social interaction). The questionnaire was based on the "Epilepsy Surgery Inventory-55", adapted for use in German speaking patients and validated by the QOLIE -10 and Beck Depression Inventory. RESULTS: A total of 51 patients (60%) were completely seizure free (ILAE1) at last available outcome (LAO). Permanent neurological deficits were observed in 8 patients (7%). Correlation analysis confirmed significant association between seizure outcome and overall HRQoL (râ¯=â¯-0.368, pâ¯<â¯.001). New permanent neurological deficits showed impact on both HRQoL and the "cognitive function" subdomain. Anxiety and subjective assessment of postoperative status were strongly correlated with overall HRQoL (râ¯=â¯0.692, pâ¯<â¯.001 and râ¯=â¯0.591, pâ¯<â¯.001 respectively) and remained as independent prognostic factors in a multivariate regression analysis. CONCLUSION: Surgery for drug-resistant epilepsy in elderly improves patients' HRQoL. Both seizure freedom and new neurological deficits influence overall HRQoL. Interestingly, anxiety and patients' subjective assessment of postoperative status showed the highest impact on HRQoL in this subpopulation of epilepsy patients.
Asunto(s)
Epilepsia , Preparaciones Farmacéuticas , Anciano , Ansiedad/etiología , Epilepsia/cirugía , Humanos , Calidad de Vida , Convulsiones , Encuestas y CuestionariosRESUMEN
BACKGROUND: In recent years, PD-1/PD-L1 immune checkpoint inhibitors have improved cancer therapy in many tumor types, but no benefit of immune checkpoint therapy has been found in glioblastoma multiforme (GBM). Based on the results of our earlier work, which showed a reduction of PD-L1 expression in patients treated with temozolomide (TMZ), we aimed to investigate the link between TMZ therapy and the immune control point target PD-L1. METHODS: RNA-sequencing data from de-novo and recurrent glioblastoma were analyzed by AutoPipe algorithm. Results were confirmed either in a cell model by two primary and one established GBM cell line and specimens of de-novo and recurrent GBM. PD-L1 and pathway activation of the JAK/STAT pathway was analyzed by quantitative real-time PCR and western blot. RESULTS: We found a significant downregulation of the JAK/STAT pathway and immune response in recurrent tumors. The cell model showed an upregulation of PD-L1 after IFNγ treatment, while additional TMZ treatment lead to a reduction of PD-L1 expression and JAK/STAT pathway activation. These findings were confirmed in specimens of de-novo and recurrent glioblastoma. CONCLUSIONS: Our results suggest that TMZ therapy leads to a down-regulation of PD-L1 in primary GBM cells. These results support the clinical findings where PD-L1 is significantly reduced in recurrent GBMs. If the target is diminished, it may also lead to impaired efficacy of PD-1/PD-L1 inhibitors such as nivolumab.