Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Turk J Biol ; 47(3): 158-169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529416

RESUMEN

Background/aim: Matrix metalloproteinases (MMPs) play an important role in the evaluation of many cancer types; however, the detection usually presents a challenge. Further assays for a better understanding of the fundamental roles of MMPs in pathophysiology are still needed. We aimed to use an activatable probe in scanning acoustic microscopy (SAM) to evaluate acoustically if the probe can aid the visualization of the effects of in vitro MMP activity. Materials and methods: We applied scanning acoustic impedance microscopy to obtain acoustic impedance maps of the cell line models of HT1080, THP-1, and SK-MEL-28 with and without MMPSense 680 probe incubation. We visually validated our results using confocal laser scanning microscopy imaging. We further analyzed the effects of MMPSense 680 probe on cell viabilities to eliminate any artifacts. Results: This is the first study presenting the applicability of SAM in the acoustical evaluation of MMPSense 680 probe cleavage in a cellular medium through acoustic impedance measurements. We proposed that SAM measurement with the activatable probe can be used as an effective tool for studying the acoustical variations of MMP activities in cell lines. As a result, we detected MMPSense 680 probe cleavage in HT1080 human fibrosarcoma cell line. Conclusion: We showed that SAM with the smart probe can detect proteolytic activity using MMPSense 680 in in vitro HT1080 cell line by acoustic impedance measurements. SAM could be proposed as an alternative tool leading a novel way for a better understanding of the roles of MMPs in cancer progression before clinical settings.

2.
Ultrasonics ; 110: 106274, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33130362

RESUMEN

Tissue-mimicking materials (TMMs) play a key role in the quality assurance of ultrasound diagnostic equipment and should have acoustic properties similar to human tissues. We propose a method to quantify the acoustic properties of TMM samples through the use of an 80 MHz Scanning Acoustic Microscopy (SAM), which provides micrometer resolution and fast data recording. We produced breast TMM samples in varying compositions that resulted in acoustic impedance values in the range of 1.373 ± 0.031 and 1.707 ± 0.036 MRayl. Additionally, liver TMM and blood mimicking fluid (BMF) samples were prepared that had acoustic impedance values of 1.693 ± 0.085 MRayl and 1.624 ± 0.006 MRayl, respectively. The characterization of the TMMs by SAM may provide reproducible and uniform acoustic reference data for tissue substitutes in a single-run microscopy experiment.


Asunto(s)
Materiales Biomiméticos , Microscopía Acústica/métodos , Acústica , Fantasmas de Imagen
3.
RSC Adv ; 11(26): 15519-15527, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481205

RESUMEN

Radiation therapy is widely used as a treatment tool for malignancies. However, radiation-related complications are still unavoidable risks for off-target cells. Little is known about radiation therapy's possible effects on mechanical features of the off-target cells such as human red blood cells (RBCs). RBCs are nucleus-free circulating cells that can deform without losing functionality in healthy conditions. Thus, to evaluate in vitro effects of radiation therapy on the healthy plasma membrane of cells, RBCs were selected as a primary test model. RBCs were exposed to clinically prescribed radiotherapy doses of 2 Gy, 12 Gy and, 25 Gy, and each radiotherapy dose group was compared to a non-irradiated group. Cells were characterized by stretching using dual-beam optical tweezers and compared using the resulting deformability index. The group receiving the highest radiation dose was found statistically distinguishable from the control group (DI0Gy = 0.33 ± 0.08), and revealed the highest deformability index (DI25Gy = 0.38 ± 0.11, p = 0.0068), while no significant differences were found for 2 Gy (DI2Gy = 0.33 ± 0.08, p = 0.9) and 12 Gy (DI12Gy = 0.31 ± 0.09, p = 0.2) dose groups. Based on these findings, we conclude that radiotherapy exposure may alter the deformability of red blood cells depending on the dose amount, and measurement of deformability index by dual-beam optical tweezers can serve as a sensitive biomarker to probe responses of cells to the radiotherapy.

4.
Radiat Oncol ; 15(1): 38, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066465

RESUMEN

BACKGROUND: On the elastic profiles of human teeth after radiotherapy for head and neck cancers, generation of dental complications, which may bring several side effects preventing the quality of life, has not well clarified. Thus, we aimed to show the applicability of using 320 MHz Scanning Acoustic Microscopy (SAM) in the evaluation of the tooth damage acoustically at the micrometer level following radiation therapy, and also in the determination of the safe dose limits to impede severe dental damage. METHODS: This prospective study was performed by SAM employed at 320 MHz by an azimuthal resolution of 4.7 µm resolving enamel and dentin. A total of 45 sound human third molar teeth collected between September 2018 and May 2019 were used for the acoustic impedance measurements pre- and post irradiation. Nine samples for each group (control, 2 Gy, 8 Gy, 20 Gy, 30 Gy and 60 Gy) were evaluated to acquire the acoustic images and perform a qualitative analysis. Scanning Electron Microscopy (SEM) images were obtained to establish a relationship between micromechanical and morphological characteristics of the teeth. Statistical analysis was conducted using the Student t-test succeded by Mann-Whitney U investigation (p < .05), while SEM images were assessed qualitatively. RESULTS: The analysis included 45 sound teeth collected from men and women 18 to 50 years old. Post irradiation micromechanical variations of human teeth were significant only in the radiation groups of 30 Gy and 60 Gy compared to pre-irradiation group for enamel (7.24 ± 0.18 MRayl and 6.49 ± 028 MRayl; p < 0.05, respectively). Besides, the teeth subjected to radiation doses of 20, 30 and 60 Gy represented significantly lower acoustic impedance values relative to non-irradiated group for dentin (6.52 ± 0.43 MRayl, 5.71 ± 0.66 MRayl and 4.82 ± 0.53 MRayl p < 0.05), respectively. CONCLUSIONS: These results are evidence for a safe acoustic examination device which may be a useful tool to visualize and follow the safe dose limits to impede severe dental damage through the radiation therapy treatment for head and neck cancers.


Asunto(s)
Elasticidad/efectos de la radiación , Neoplasias de Cabeza y Cuello/radioterapia , Microscopía Acústica/métodos , Calidad de Vida , Traumatismos por Radiación/diagnóstico , Radioterapia de Intensidad Modulada/efectos adversos , Diente/efectos de la radiación , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Pronóstico , Estudios Prospectivos , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Diente/diagnóstico por imagen , Adulto Joven
5.
Ultrasonics ; 94: 10-19, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30606650

RESUMEN

The purpose of this study is to explore the feasibility of time-dependent acoustic impedance measurement by Scanning Acoustic Microscopy (SAM) for analyzing the sodium diffusion. The purpose is motivated by the fact that sodium monitoring is challenging and still in the area of exploratory analysis despite its biological importance. To our knowledge, this is the first study in which sodium diffusion has been investigated by time-dependent acoustic impedance measurements provided by SAM. We first tested the idea in an agarose phantom as a proof-of-concept. Accordingly, we designed the agarose phantom which initially contains a well of sodium chloride (NaCl) solution moving radially into the phantom. By using NaCl diffusion in the phantom, we obtained two-dimensional (2D) acoustic impedance (Z) maps over time through SAM operating with 80 MHz ultrasonic transducer having a lateral resolution of 20 µm. A linear correlation between the changes in the concentration profile of the phantom and its acoustic impedance was introduced. Analysis of experimental data proved that spatially changing acoustic impedance could be ascribed to the diffusion process and produced a diffusion coefficient in the order of 10-5 cm2/s which matches well with the literature. Our results showed that SAM could monitor the time-dependent alterations in acoustic impedance resulting from the diffusion of sodium inside the agarose phantom. With this study, SAM shows a promise as a monitoring tool not only to obtain static images but also to perform dynamic investigations of sodium ions with the advantages of providing images in micrometer resolution with a scanning time no longer than 2 min for an image area of 4.8 mm × 4.8 mm.


Asunto(s)
Microscopía Acústica/métodos , Cloruro de Sodio/química , Difusión , Procesamiento de Imagen Asistido por Computador/métodos , Iones , Fantasmas de Imagen , Sefarosa/química
6.
J Biomed Opt ; 21(6): 65007, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367251

RESUMEN

Lasers have the potential for reducing the required debonding force and can prevent the mechanical damage given to the enamel surface as a result of conventional debonding procedure. However, excessive thermal effects limit the use of lasers for debonding purposes. The aim of this study was to investigate the optimal parameters of 1940-nm Tm:fiber laser for debonding ceramic brackets. Pulling force and intrapulpal temperature measurements were done during laser irradiation simultaneously. A laser beam was delivered in two different modes: scanning the fiber tip on the bracket surface with a Z shape movement or direct application of the fiber tip at one point in the center of the bracket. Results showed that debonding force could be decreased significantly compared to the control samples, in which brackets were debonded by only mechanical force. Intrapulpal temperature was kept equal or under the 5.5°C threshold value of probable thermal damage to pulp. Scanning was found to have no extra contribution to the process. It was concluded that using 1940-nm Tm:fiber laser would facilitate the debonding of ceramic brackets and can be proposed as a promising debonding tool with all the advantageous aspects of fiber lasers.


Asunto(s)
Cerámica/efectos de la radiación , Desconsolidación Dental/métodos , Desconsolidación Dental/normas , Esmalte Dental/efectos de la radiación , Rayos Láser , Soportes Ortodóncicos , Desconsolidación Dental/instrumentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA