Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847791

RESUMEN

This work reports in situ (active) electrochemical control over the coupling strength between semiconducting nanoplatelets and a plasmonic cavity. We found that by applying a reductive bias to an Al nanoparticle lattice working electrode the number of CdSe nanoplatelet emitters that can couple to the cavity is decreased. Strong coupling can be reversibly recovered by discharging the lattice at oxidative potentials relative to the conduction band edge reduction potential of the emitters. By correlating the number of electrons added or removed with the measured coupling strength, we identified that loss and recovery of strong coupling are likely hindered by side processes that trap and/or inhibit electrons from populating the nanoplatelet conduction band. These findings demonstrate tunable, external control of strong coupling and offer prospects to tune selectivity in chemical reactions.

2.
J Am Chem Soc ; 146(8): 5252-5262, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373282

RESUMEN

Accessing semiconductor nanocrystals free from surface defects is an outstanding challenge in the design of materials with targeted properties. Despite the established importance of Z-type ligand surface passivation to eliminate defects, the optical and electronic properties of nanocrystals vary depending on the nanocrystal composition and Z-type ligand identity. In this work, a series of Cd-, Zn-, and Pb-based non-native Z-type ligands with the formula MX2 (X = undecylenate or chloride) were employed to elucidate Z-type ligand characteristics that result in surface passivation of undercoordinated surface ions to eliminate trap states from CdSe nanocrystals. First, CdSe nanocrystals were reacted with N,N,N',N'-tetramethylethylene-1,2-diamine (TMEDA) to remove native Cd(oleate)2 Z-type ligands from the surface, resulting in undercoordinated surface chalcogen ions. After subsequent reaction with M(UDA)2, ligands bound to the surface were quantified by NMR spectroscopy, and in parallel, the impact of Z-type ligands on the nanocrystal optical properties was monitored using photoluminescence spectroscopy. We find that Cd- and Zn-based Z-type ligands exhibit similar reactivity with the nanocrystal surface via NMR spectroscopy, yet Cd(UDA)2 passivation results in an 800% PL increase while Zn(UDA)2 passivation yields a 13% increase in photoluminescence intensity. Nanocrystals reacted with Pb-based Z-type ligands have lower surface coverage, as quantified by NMR spectroscopy, and lead to only a marginal increase of nanocrystal photoluminescence intensity (60%). These data indicate that the metal identity of the Z-type ligand has a profound impact on the reactivity and resulting electronic structure of the postsynthetically modified nanocrystal. This work provides a framework for achieving defect-free CdSe nanocrystals.

3.
J Am Chem Soc ; 146(6): 3742-3754, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38316637

RESUMEN

Cobalt polypyridyl complexes stand out as efficient catalysts for electrochemical proton reduction, but investigations into their operating mechanisms, with broad-reaching implications in catalyst design, have been limited. Herein, we investigate the catalytic activity of a cobalt(II) polypyridyl complex bearing a pendant pyridyl base with a series of organic acids spanning 20 pKa units in acetonitrile. Structural analysis, as well as electrochemical studies, reveals that the Co(III) hydride intermediate is formed through reduction of the Co(II) catalyst followed by direct metal protonation in the initial EC step despite the presence of the pendant base, which is commonly thought of as a more kinetically accessible protonation site. Protonation of the pendant base occurs after the Co(III) hydride intermediate is further reduced in the overall ECEC pathway. Additionally, when the acid used is sufficiently strong, the Co(II) catalyst can be protonated, and the Co(III) hydride can react directly with acid to release H2. With thorough mechanistic understanding, the appropriate electroanalytical methods were identified to extract rate constants for the elementary steps over a range of conditions. Thermodynamic square schemes relating catalytic intermediates proposed in the three electrocatalytic HER mechanisms were constructed. These findings reveal a full description of the HER electrocatalysis mediated by this molecular system and provide insights into strategies to improve synthetic fuel-forming catalysts operative through metal hydride intermediates.

4.
J Am Chem Soc ; 146(12): 7998-8004, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38507795

RESUMEN

A high-surface-area p-type porous Si photocathode containing a covalently immobilized molecular Re catalyst is highly selective for the photoelectrochemical conversion of CO2 to CO. It gives Faradaic efficiencies of up to 90% for CO at potentials of -1.7 V (versus ferrocenium/ferrocene) under 1 sun illumination in an acetonitrile solution containing phenol. The photovoltage is approximately 300 mV based on comparisons with similar n-type porous Si cathodes in the dark. Using an estimate of the equilibrium potential for CO2 reduction to CO under optimized reaction conditions, photoelectrolysis was performed at a small overpotential, and the onset of electrocatalysis in cyclic voltammograms occurred at a modest underpotential. The porous Si photoelectrode is more stable and selective for CO production than the photoelectrode generated by attaching the same Re catalyst to a planar Si wafer. Further, facile characterization of the porous Si-based photoelectrodes using transmission mode FTIR spectroscopy leads to highly reproducible catalytic performance.

5.
Acc Chem Res ; 56(13): 1744-1755, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37307510

RESUMEN

ConspectusMany desirable and undesirable properties of semiconductor nanocrystals (NCs) can be traced to the NC surface due to the large surface-to-volume ratio. Therefore, precise control of the NC surface is imperative to achieve NCs with the desired qualities. Ligand-specific reactivity and surface heterogeneity make it difficult to accurately control and tune the NC surface. Without a molecular-level appreciation of the NC surface chemistry, modulating the NC surface is impossible and the risk of introducing deleterious surface defects is imminent. To gain a more comprehensive understanding of the surface reactivity, we have utilized a variety of spectroscopic techniques and analytical methods in concert.This Account describes our use of robust characterization techniques and ligand exchange reactions in effort to establish a molecular-level understanding of NC surface reactivity. The utility of NCs in target applications such as catalysis and charge transfer hangs on precise tunability of NC ligands. Modulating the NC surface requires the necessary tools to monitor chemical reactions. One commonly utilized analytical method to achieve targeted surface compositions is 1H nuclear magnetic resonance (NMR) spectroscopy. Here we describe our use of 1H NMR spectroscopy to monitor chemical reactions at CdSe and PbS NC surfaces to identify ligand specific reactivity. However, seemingly straightforward ligand exchange reactions can vary widely depending on the NC materials and anchoring group. Some non-native X-type ligands will irreversibly displace native ligands. Other ligands exist in equilibrium with native ligands. Depending on the application, it is important to understand the nature of exchange reactions. This level of understanding can be obtained by extracting exchange ratios, exchange equilibrium, and reaction mechanism information from 1H NMR spectroscopy to establish precise NC reactivity.Reactivity that occurs through multiple, parallel ligand exchange mechanisms can involve both the liberation of metal-based Z-type ligands in addition to reactivity of X-type ligands. In these reactions, 1H NMR spectroscopy fails to discern between an X-type oleate or a Z-type Pb(oleate)2 because only the alkene resonance of the organic constituent is probed by this method. Multiple, parallel reaction pathways occur when thiol ligands are introduced to oleate-capped PbS NCs. This necessitated the use of synergistic characterization methods including 1H NMR spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS) to characterize both surface-bound and liberated ligands.Similar analytical methods have been employed to probe the NC topology, which is an important, but often overlooked, component to NC reactivity given the facet-specific reactivity of PbS NCs. Through the tandem use of NMR spectroscopy and ICP-MS, we have monitored the liberation of Pb(oleate)2 as an L-type ligand is titrated to the NC to determine the quantity and equilibrium of Z-type ligands. By studying a variety of NC sizes, we correlated the number of liberated ligands with the size-dependent topology of PbS NCs.Lastly, we incorporate redox-active chemical probes into our toolbox to study NC surface defects. We describe how the site-specific reactivity and relative energetics of redox-active surface-based defects are elucidated using redox probes and show that this reactivity is highly dependent on the surface composition. This Account is designed to encourage readers to consider the necessary characterization techniques needed establish a molecular-level understanding of NC surfaces in their own work.

6.
Inorg Chem ; 63(4): 1858-1866, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38226604

RESUMEN

The electronic structure and photophysics of two low spin metallocenes, decamethylmanganocene (MnCp*2) and decamethylrhenocene (ReCp*2), were investigated to probe their promise as photoredox reagents. Computational studies support the assignment of 2E2 ground state configurations and low energy ligand-to-metal charge transfer transitions for both complexes. Weak emission is observed at room temperature for ReCp*2 with τ = 1.8 ns in pentane, whereas MnCp*2 is not emissive. Calculation of the excited state reduction potentials for both metallocenes reveal their potential potency as excited state reductants (E°'([MnCp*2]+/0*) = -3.38 V and E°'([ReCp*2]+/0*) = -2.61 V vs Fc+/0). Comparatively, both complexes exhibit mild potentials for photo-oxidative processes (E°'([MnCp*2]0*/-) = -0.18 V and E°'([ReCp*2]0*/-) = -0.20 V vs Fc+/0). These results showcase the rich electronic structure of low spin d5 metallocenes and their promise as excited state reductants.

7.
Chem Soc Rev ; 52(20): 7137-7169, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37750006

RESUMEN

Proton transfer reactions involving transition metal hydride complexes are prevalent in a number of catalytic fuel-forming reactions, where the proton transfer kinetics to or from the metal center can have significant impacts on the efficiency, selectivity, and stability associated with the catalytic cycle. This review correlates the often slow proton transfer rate constants of transition metal hydride complexes to their electronic and structural descriptors and provides perspective on how to exploit these parameters to control proton transfer kinetics to and from the metal center. A toolbox of techniques for experimental determination of proton transfer rate constants is discussed, and case studies where proton transfer rate constant determination informs fuel-forming reactions are highlighted. Opportunities for extending proton transfer kinetic measurements to additional systems are presented, and the importance of synergizing the thermodynamics and kinetics of proton transfer involving transition metal hydride complexes is emphasized.

8.
J Am Chem Soc ; 145(20): 11282-11292, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161731

RESUMEN

Photovoltages for hydrogen-terminated p-Si(111) in an acetonitrile electrolyte were quantified with methyl viologen [1,1'-(CH3)2-4,4'-bipyridinium](PF6)2, abbreviated MV2+, and [Ru(bpy)3](PF6)2, where bpy is 2,2'-bipyridine, that respectively undergo two and three one-electron transfer reductions. The reduction potentials, E°, of the two MV2+ reductions occurred at energies within the forbidden bandgap, while the three [Ru(bpy)3]2+ reductions occurred within the continuum of conduction band states. Bandgap illumination resulted in reduction that was more positive than that measured with a degenerately doped n+-Si demonstrative of a photovoltage, Vph, that increased in the order MV2+/+ (260 mV) < MV+/0 (400 mV) < Ru2+/+ (530 mV) ∼ Ru+/0 (540 mV) ∼ Ru0/- (550 mV). Pulsed 532 nm excitation generated electron-hole pairs whose dynamics were nearly constant under depletion conditions and increased markedly as the potential was raised or lowered. A long wavelength absorption feature assigned to conduction band electrons provided additional evidence for the presence of an inversion layer. Collectively, the data reveal that the most optimal photovoltage, as well as the longest electron-hole pair lifetime and the highest surface electron concentration, occurs when E° lies energetically within the unfilled conduction band states where an inversion layer is present. The bell-shaped dependence for electron-hole pair recombination with the surface potential was predicted by the time-honored SRH model, providing a clear indication that this interface provides access to all four bias conditions, i.e., accumulation, flat band, depletion, and inversion. The implications of these findings for photocatalysis applications and solar energy conversion are discussed.

9.
Inorg Chem ; 62(17): 6576-6585, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652699

RESUMEN

A metal-to-ligand charge transfer with mixed intraligand character is observed for the rhenium hexakisarylisocyanide complex [Re(CNAr)6]PF6 (CNAr = 2,6-dimethylphenylisocyanide, λmax = 300 nm). Upon oxidation to [Re(CNAr)6](PF6)2, the dominant low energy optical transition is a ligand-to-metal charge transfer (LMCT) mixed with intraligand transitions (λmax = 650 nm). TD-DFT was used to identify the participating ligand-based orbitals in the LMCT transition, revealing that the majority of the donor orbital is based on the aryl ring (85%) as opposed to the CN bond (14%). For both [Re(CNAr)6]+ and [Re(CNAr)6]2+, structural characterization by X-ray diffraction reveals deviations from Oh geometry at the central Re ion, with larger reduction in symmetry observed for Re(II). For [Re(CNAr)6]+, these structural changes lead to a broadening of the strong ν(C≡N) stretch (2065 cm-1), as the degeneracy of the T1u IR-active mode is broken. Furthermore, a shoulder is observed for this ν(C≡N) stretch, resulting from deviation of the C-N-Ar bond from linearity. By contrast, [Re(CNAr)6]2+ has two weak bands in the ν(C≡N) region (2065 and 2121 cm-1). DFT calculations indicate that reduction of symmetry at the central rhenium ion manifests in the decrease in intensity and the observed split of the ν(C≡N) band. Stability of both complexes are limited by light-induced decomposition where Re(I) dissociates a isocyanide ligand upon irradiation and Re(II) absorbance decays under ambient light. These data provide new insights to the electronic structure of [Re(CNAr)6]2+, enhancing our understanding of LMCT excited states and the versatility of isocyanide ligands.

10.
Proc Natl Acad Sci U S A ; 117(23): 12564-12571, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488721

RESUMEN

In the development of photoelectrochemical cells for water splitting or CO2 reduction, a major challenge is O2 evolution at photoelectrodes that, in behavior, mimic photosystem II. At an appropriate semiconductor electrode, a water oxidation catalyst must be integrated with a visible light absorber in a stable half-cell configuration. Here, we describe an electrode consisting of a light absorber, an intermediate electron donor layer, and a water oxidation catalyst for sustained light driven water oxidation catalysis. In assembling the electrode on nanoparticle SnO2/TiO2 electrodes, a Ru(II) polypyridyl complex was used as the light absorber, NiO was deposited as an overlayer, and a Ru(II) 2,2'-bipyridine-6,6'-dicarboxylate complex as the water oxidation catalyst. In the final electrode, addition of the NiO overlayer enhanced performance toward water oxidation with the final electrode operating with a 1.1 mA/cm2 photocurrent density for 2 h without decomposition under one sun illumination in a pH 4.65 solution. We attribute the enhanced performance to the role of NiO as an electron transfer mediator between the light absorber and the catalyst.

11.
Photosynth Res ; 151(2): 155-161, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34258679

RESUMEN

The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+.


Asunto(s)
Compuestos Organometálicos , Renio , Ligandos , Compuestos Organometálicos/química , Teoría Cuántica , Renio/química , Análisis Espectral
12.
J Org Chem ; 87(8): 5076-5084, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35353509

RESUMEN

Cobalamin has shown promise as a light-sensitive drug delivery platform owing to its ease of modification and the high quantum yields for drug photorelease. However, studies to date on the general photochemistry of alkyl cobalamins have primarily focused on methyl and adenosyl-substituted derivatives, the natural cofactors present in various enzymatic species. We describe the synthesis and photolytic behavior of cobalamin conjugates comprised of different combinations of fluorophores and ß-axial ligands. In general, cobalamin conjugates containing ß-axial alkyl substituents undergo efficient photolysis under aqueous conditions, with quantum yields up to >40%. However, substituents that are large and hydrophobic, or unable to readily support the presumed radical intermediate, suffer less efficient photolysis (<15%) than smaller, water-soluble, analogs. By contrast, quantum yields improve by 2-fold in DMF for cobalamins containing large hydrophobic ß-axial substituents. This suggests that drug release from carriers comprised of membranous compartments, such as liposomes, may be significantly more efficient than the corresponding photorelease in an aqueous environment. Finally, we explored the impact of fluorophores on the photolysis of alkyl cobalamins under tissue-mimetic conditions. Cobalamins substituted with efficient photon-capturing fluorophores display up to 4-fold enhancements in photolysis relative to unsubstituted derivatives. In summary, we have shown that the photosensitivity of alkyl cobalamin conjugates can be tuned by altering the Co-appended alkyl moiety, modulating the polarity of the environment (solvent), and installing photon-capturing fluorophores onto the cobalamin framework.


Asunto(s)
Colorantes Fluorescentes , Vitamina B 12 , Colorantes Fluorescentes/química , Ligandos , Fotólisis , Vitamina B 12/química , Agua
13.
J Am Chem Soc ; 143(3): 1251-1266, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33442974

RESUMEN

Semiconductor nanocrystals exhibit attractive photophysical properties for use in a variety of applications. Advancing the efficiency of nanocrystal-based devices requires a deep understanding of the physical defects and electronic states that trap charge carriers. Many of these states reside at the nanocrystal surface, which acts as an interface between the semiconductor lattice and the molecular capping ligands. While a detailed structural and electronic understanding of the surface is required to optimize nanocrystal properties, these materials are at a technical disadvantage: unlike molecular structures, semiconductor nanocrystals lack a specific chemical formula and generally must be characterized as heterogeneous ensembles. Therefore, in order for the field to improve current nanocrystal-based technologies, a creative approach to gaining a "molecular-level" picture of nanocrystal surfaces is required. To this end, an expansive toolbox of experimental and computational techniques has emerged in recent years. In this Perspective, we critically evaluate the insight into surface structure and reactivity that can be gained from each of these techniques and demonstrate how their strategic combination is already advancing our molecular-level understanding of nanocrystal surface chemistry.

14.
J Am Chem Soc ; 143(9): 3393-3406, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621088

RESUMEN

Two-electron, one-proton reactions of a family of [CoCp(dxpe)(NCCH3)]2+ complexes (Cp = cyclopentadienyl, dxpe = 1,2-bis(di(aryl/alkyl)phosphino)ethane) form the corresponding hydride species [HCoCp(dxpe)]+ (dxpe = dppe (1,2-bis(diphenylphosphino)ethane), depe (1,2-bis(diethylphosphino)ethane), and dcpe (1,2-bis(dicyclohexylphosphino)ethane)) through a stepwise proton-coupled electron transfer process. For three [CoCp(dxpe)(NCCH3)]2+ complexes, peak shift analysis was employed to quantify apparent proton transfer rate constants from cyclic voltammograms recorded with acids ranging 22 pKa units. The apparent proton transfer rate constants correlate with the strength of the proton source for weak acids, but these apparent proton transfer rate constants curiously plateau (kpl) as the reaction becomes increasingly exergonic. The absolute apparent proton transfer rate constants across both these regions correlate with the steric bulk of the chelating diphosphine ligand, with bulkier ligands leading to slower kinetics (kplateau,depe = 3.5 × 107 M-1 s-1, kplateau,dppe = 1.7 × 107 M-1 s-1, kplateau,dcpe = 7.1 × 104 M-1 s-1). Mechanistic studies were conducted to identify the cause of the aberrant kPTapp-ΔpKa trends. When deuterated acids are employed, deuterium incorporation in the Cp ring is observed, indicating protonation of the CoCp(dxpe) species to form the corresponding hydride proceeds via initial ligand protonation. Digital simulations of cyclic voltammograms show ligand loss accompanying initial reduction gates subsequent PCET activity at higher driving forces. Together, these experiments reveal the details of the reaction mechanism: reduction of the Co(III) species is followed by dissociation of the bound acetonitrile ligand, subsequent reduction of the unligated Co(II) species to form a Co(I) species is followed by protonation, which occurs at the Cp ring, followed by tautomerization to generate the stable Co(III)-hydride product [HCoCp(dxpe)]+. Analysis as a function of chelating disphosphine ligand, solvent, and acid strength reveals that the ligand dissociation equilibrium is directly influenced by the steric bulk of the phosphine ligands and gates protonation, giving rise to the plateau of the apparent proton transfer rate constant with strong acids. The complexity of the reaction mechanism underpinning hydride formation, encompassing dynamic behavior of the entire ligand set, highlights the critical need to understand elementary reaction steps in proton-coupled electron transfer reactions.


Asunto(s)
Cobalto/química , Complejos de Coordinación/síntesis química , Electrones , Hidrógeno/química , Protones , Técnicas Electroquímicas , Cinética , Ligandos , Oxidación-Reducción , Fosfinas/química
15.
Analyst ; 145(4): 1258-1278, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31984999

RESUMEN

Rotating disc electrode (RDE) voltammetry has been widely adopted for the study of heterogenized molecular electrocatalysts for multi-step fuel-forming reactions but this tool has never been comprehensively applied to their homogeneous analogues. Here, the utility and limitations of RDE techniques for mechanistic and kinetic analysis of homogeneous molecular catalysts that mediate multi-electron, multi-substrate redox transformations are explored. Using the ECEC' reaction mechanism as a case study, two theoretical models are derived based on the Nernst diffusion layer model and the Hale transformation. Current-potential curves generated by these computational strategies are compared under a variety of limiting conditions to identify conditions under which the more minimalist Nernst Diffusion Layer approach can be applied. Based on this theoretical treatment, strategies for extracting kinetic information from the plateau current and the foot of the catalytic wave are derived. RDEV is applied to a cobaloxime hydrogen evolution reaction (HER) catalyst under non-aqueous conditions in order to experimentally validate this theoretical framework and explore the feasibility of RDE as a tool for studying homogeneous catalysts. Crucially, analysis of the foot-of-the-wave via this theoretical framework provides rate constants for elementary reaction steps that agree with those extracted from stationary voltammetric methods, supporting the application of RDE to study homogeneous fuel-forming catalysts. Finally, obstacles encountered during the kinetic analysis of cobaloxime, along with the voltammetric signatures used to diagnose this reactivity, are discussed with the goal of guiding groups working to improve RDE set-ups and help researchers avoid misinterpretation of RDE data.

16.
Chem Soc Rev ; 48(11): 2927-2945, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31089606

RESUMEN

What is the identity of the true electrocatalytic species? This fundamental question has plagued the molecular electrocatalysis community during its decades-long search for selective and efficient transition-metal based electrocatalysts for fuel forming reactions. Identifying when the added species is a precatalyst that transforms into the active catalyst in situ is an extraordinarily complex endeavor. Thankfully, the last decade has witnessed a resurgence of interest in understanding and controlling these transformations, leading to an expansion of the experimental toolkit available to probe catalyst identity. In this Tutorial Review, researchers will learn how the nature of the active catalyst can be uncovered using state-of-the-art electrochemical and spectroscopic methods. Analysis of catalytic voltammograms can quickly furnish qualitative evidence of precatalyst transformation and a library of these tell-tale signs is discussed, along with the chemical phenomena underpinning each feature. Complementary electrochemical and spectroscopic methods for identifying in situ generation of heterogeneous catalysts are also presented, outlining the conditions required for correct application with special emphasis on potential pitfalls when studying weakly-adsorbed material. Case studies are presented to showcase how these different probes can be integrated to develop a comprehensive picture of precatalyst transformation.

17.
Nano Lett ; 19(2): 1151-1157, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30640472

RESUMEN

Quantum dot surfaces are redox active and are known to influence the electronic properties of nanocrystals, yet the molecular-level changes in surface chemistry that occur upon addition of charge are not well understood. In this paper, we report a systematic study monitoring changes in surface coordination chemistry in 3.4 nm CdSe quantum dots upon remote chemical doping by the radical anion reductant sodium naphthalenide (Na[C10H8]). These studies reveal a new mechanism for charge-balancing the added electrons that localize on surface states through loss of up to ca. 5% of the native anionic carboxylate ligands, as quantified through a combination of UV-vis absorption, 1H NMR, and FTIR spectroscopies. A new method for distinguishing between reduction of surface metal and chalcogenide ions by monitoring ligand loss and optical changes upon doping is introduced. This work emphasizes the importance of studying changes in surface chemistry with remote chemical doping and is more broadly contextualized within the redox reactivity of the QD surface.

18.
Inorg Chem ; 58(24): 16510-16517, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31755267

RESUMEN

Studying the formation of transition metal hydride complexes via proton-coupled electron transfer is important for developing next-generation molecular catalysts for hydrogen evolution. We report herein the study of stepwise photoinduced reduction and protonation of [CoIICp(dppe)]+ (Cp = cyclopentadienyl, dppe = 1,2-bis(diphenylphosphino)ethane) to form the corresponding hydride complex [HCoIIICp(dppe)]+. Reaction intermediates were optically tracked using transient absorption spectroscopy, and a combination of experimental fitting and kinetic simulations was used to determine apparent rate constants for electron transfer and proton transfer with a range of acid sources. A linear free energy relationship is observed between measured apparent proton transfer rate constants and acid strength, but marked differences from previously electrochemically determined protonation rate constants are found. These deviations, which stem from ground-state reactivity present in photochemical experiments, highlight the challenges in comparing mechanistic studies using different techniques.

19.
Inorg Chem ; 58(10): 6647-6658, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31033279

RESUMEN

The applied potential at which [NiII(P2PhN2Bn)2]2+ (P2PhN2Bn = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) catalyzes hydrogen production is reported to vary as a function of proton source p Ka in acetonitrile. By contrast, most molecular catalysts exhibit catalytic onsets at p Ka-independent potentials. Using experimentally determined thermochemical parameters associated with reduction and protonation, a coupled Pourbaix diagram is constructed for [NiII(P2PhN2Bn)2]2+. One layer describes proton-coupled electron transfer reactivity involving ligand-based protonation, and the second describes metal-based protonation. An overlay of this diagram with experimentally determined E cat/2 values spanning 15 p Ka units, along with complementary stopped-flow rapid mixing experiments to detect reaction intermediates, supports a mechanism in which the proton-coupled electron transfer processes underpinning the p Ka-dependent catalytic processes involve protonation of the ligand, not the metal center. For proton sources with p Ka values in the range 6-10.6, the initial species formed is the doubly reduced, doubly protonated species [Ni0(P2PhN2BnH)2]2+, despite a higher overpotential for this proton-coupled electron transfer reaction in comparison to forming the metal-protonated isomer. In this complex, each ligand is protonated in the exo position with the two amine moieties on each ligand binding a single proton and positioning it away from the metal center. This species undergoes very slow isomerization to form an endo-protonated hydride species [HNiII(P2PhN2Bn)(P2PhN2BnH)]2+ that can release hydrogen to close the catalytic cycle. Importantly, this slow isomerization does not perturb the initially established proton-coupled electron transfer equilibrium, placing catalysis under thermodynamic control. New details revealed about the reaction mechanism from the coupled Pourbaix diagram and the complementary stopped-flow studies lead to predictions as to how this p Ka-dependent activity might be engendered in other molecular catalysts for multi-electron, multi-proton transformations.

20.
Phys Chem Chem Phys ; 21(29): 16353-16358, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31309943

RESUMEN

A novel pyranine derivative, EtHPTA-OH, was synthesized via the substitution of the anionic sulfonate groups with neutral diethylsulfonamide groups. The photophysical and photochemical properties of EtHPTA-OH were studied using photoluminescence quenching and transient absorption spectroscopy. The singlet state of EtHPTA-OH was found to be highly photoacidic (pKa* = 8.74 in acetonitrile). A series of aniline and pyridine bases were used to investigate excited-state proton transfer (ESPT) from singlet EtHPTA-OH, and rate constants for singlet quenching via ESPT were determined (kq = 5.18 × 109 to 1.05 × 1010 M-1 s-1). EtHPTA-OH was also found to exhibit a long-lived triplet state which reacts through a triplet-triplet annihilation (TTA) process to reform singlet EtHPTA-OH on timescales of up to 80 µs. Detection of ESPT photoproducts on timescales comparable to that of TTA singlet regeneration provides strong evidence for photoacidic behavior stemming from the regenerated singlet EtHPTA-OH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA