Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955732

RESUMEN

Peripheral nerve injury remains a serious problem for medicine, with no effective method of treatment at the moment. The most prominent example of this problem is neonatal brachial plexus palsy, which results from the stretching of the brachial plexus nerves in the birth or perinatal period. Multipotent mesenchymal cells (MSCs) and the extracellular vesicles (EVs) they produce are known to have a marked neuroprotective effect in central nervous system injuries. We suggested that the use of MSCs-derived EVs may be an effective approach to the regeneration of peripheral nerves after injury. Sciatic nerve injury was modeled in rats via crushing, and then a gel containing MSCs-EVs was applied to the injured area. After 15 and 30 days, a histological, physiological, and functional assessment of nerve, dorsal root ganglia (DRG), and innervated muscles' recovery was performed. Transplantation of EVs to the area of sciatic nerve injury significantly reduced muscle atrophy as compared to the control group. Functional recovery of the innervated muscles, as measured by the extensor postural thrust test, was revealed 30 days after the surgery. We associate the obtained results with EVs-induced neuroprotective mechanisms, which were expressed in a decrease in apoptotic neuronal death and an increase in regeneration-associated proteins NF-200 and GAP-43, as well as in DRG and damaged nerve. We suggest that the therapeutic scheme we used is efficient for the treatment of acute peripheral nervous system injuries and can be transferred to the clinics. However, additional studies are required for a more detailed analysis of neuroprotection mechanisms.


Asunto(s)
Lesiones por Aplastamiento , Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Animales , Lesiones por Aplastamiento/patología , Vesículas Extracelulares/patología , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Embarazo , Ratas , Nervio Ciático/metabolismo , Neuropatía Ciática/patología
2.
Brain Inj ; 35(4): 490-500, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33523710

RESUMEN

Primary Objective: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. Research Design: We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain. Methods and Procedures: Photothrombotic stroke was induced by laser irradiation of mouse cortex after administration of photosensitizer Bengal Rose, which does not penetrate cells and remains in blood vessels. Under light exposure, it induces vessel occlusion. Infarct volume and histological changes in the cerebral cortex were evaluated 3, 7 and 14 days after photothrombotic impact. Main Outcomes and Results: Harmine and 4-chlorophenylalanine did not influence infarct volume and morphology of peri-infarct area in the mouse brain cortex after photothrombotic stroke. However, LIMK2 inhibitor T56-LIMKi significantly reduced infarct volume 7 and 14 days after photothrombotic stroke. It also increased the percent of normochromic neurons and decreased the fraction of altered cortical cells (hypochromic, hyperchromic and pyknotic neurons). Conclusions: T56-LIMK2i may be considered as a promising anti-stroke agent.


Asunto(s)
Benzamidas/farmacología , Isquemia Encefálica , Isoxazoles/farmacología , Quinasas Lim/antagonistas & inhibidores , Accidente Cerebrovascular , Animales , Encéfalo , Modelos Animales de Enfermedad , Ratones , Accidente Cerebrovascular/tratamiento farmacológico
3.
Mol Neurobiol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429623

RESUMEN

Heat shock protein 70 (HSP70) is activated under stress response. Its involvement in cell protection, including energy metabolism and quality control makes it a promising pharmacological target. A strategy to increase HSP70 levels inside the cells is the application of recombinant HSP70. However, cell permeability and functionality of these exogenously applied proteins inside the cells is still disputable. Here, using fluorescence- labeled HSP70, we have studied permeability and distribution of HSP70 inside primary neurons and astrocytes, and how exogenous HSP70 changes mitochondrial metabolism and mitophagy. We have found that exogenous recombinant HSP70 can penetrate the neurons and astrocytes and distributes in mitochondria, lysosomes and in lesser degree in the endoplasmic reticulum. HSP70 increases mitochondrial membrane potential in control neurons and astrocytes, and in fibroblasts of patients with familial Parkinson´s disease (PD) with PINK1 and LRRK2 mutations. Increased mitochondrial membrane potential was associated with higher mitochondrial ROS production and activation of mitophagy. Importantly, preincubation of the cells with HSP70 protected neurons and astrocytes against cell death in a toxic model of PD induced by rotenone, and in the PINK1 and LRRK2 PD human fibroblasts. Thus, exogenous recombinant HSP70 is cell permeable, and acts as endogenous HSP70 protecting cells in the case of toxic model and familial forms of Parkinson's Disease.

4.
Exp Neurol ; 373: 114670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158007

RESUMEN

Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.


Asunto(s)
Fármacos Neuroprotectores , Humanos , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Axotomía , Neuronas/metabolismo , Nervio Ciático/lesiones , Apoptosis , Proteínas HSP70 de Choque Térmico/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Ganglios Espinales/metabolismo , Regeneración Nerviosa
5.
J Pers Med ; 13(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511788

RESUMEN

Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.

6.
Cells ; 11(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011655

RESUMEN

The search for effective neuroprotective agents for the treatment of neurotrauma has always been of great interest to researchers around the world. Extracellular heat shock protein 70 (eHsp70) is considered a promising agent to study, as it has been demonstrated to exert a significant neuroprotective activity against various neurodegenerative diseases. We showed that eHsp70 can penetrate neurons and glial cells when added to the incubation medium, and can accumulate in the nuclei of neurons and satellite glial cells after axotomy. eHsp70 reduces apoptosis and necrosis of the glial cells, but not the neurons. At the same time, co-localization of eHsp70 with p53 protein, one of the key regulators of apoptosis, was noted. eHsp70 reduces the level of the p53 protein apoptosis promoter both in glial cells and in the nuclei and cytoplasm of neurons, which indicates its neuroprotective effect. The ability of eHsp70 to reverse the proapoptotic effect of the p53 activator WR1065 may indicate its ability to regulate p53 activity or its proteosome-dependent degradation.


Asunto(s)
Apoptosis , Astacoidea/metabolismo , Axotomía , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Regulación hacia Abajo , Factor de Transcripción E2F1/metabolismo , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Humanos , Mecanorreceptores/metabolismo , Mercaptoetilaminas/farmacología , Necrosis , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
Mol Neurobiol ; 55(1): 229-248, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28840478

RESUMEN

Ischemic tolerance is the establishment of brain resistance to severe ischemic damage by a mild preconditioning stimulus, insufficient to irreversible tissue damage, but capable of initiating a defense response. We developed the model of focal-focal ischemic tolerance, in which the first local photothrombotic infarct (PTI) in the rat brain cortex reduced the infarct caused by second PTI applied to the contralateral cortex of the same rat 7 days later. Using antibody microarrays, we compared protein profiles in the penumbra surrounding the PTI core after single and double PTI. We observed up- or downregulation of several dozens of proteins that are aimed at neurodegeneration or neuroprotection. Both single and double PTI induced damaging processes in the rat cerebral cortex that included over-expression of various pro-apoptotic and signaling proteins and downregulation of other signaling proteins and regulators of proliferation, some components of actin, intermediate fiber and microtubular cytoskeletons, and proteins involved in vesicle transport and synaptic transmission. The simultaneous protective processes included the upregulation of different signaling and anti-apoptotic proteins, stimulators of proliferation, and proteins involved in remodeling of actin cytoskeleton. The elevated expression of some signaling proteins, such as calcium-dependent PLCγ1, PKVα1, CaMKIIα, calnexin, and calreticulin was preserved after double PTI. Less pro-survival proteins were downregulated in the penumbra after double than single impact.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Corteza Cerebral/metabolismo , Precondicionamiento Isquémico/métodos , Proteómica/métodos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Isquemia Encefálica/genética , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Masculino , Ratas , Ratas Wistar
8.
Curr Cancer Drug Targets ; 13(8): 843-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23675881

RESUMEN

Malignant melanoma is an extremely aggressive and metastatic cancer, highly resistant to conventional treatment modalities. Understanding of fundamental mechanisms responsible for its genesis and progression is critical for development of successful chemotherapeutic treatment. It is becoming clear that melanoma results from complex changes in multiple signaling pathways that control cell proliferation and ability to evade the cell death processes. Impairment or hyper-activation of some components of these pathways may lead to malignant transformation and cancer development. In the present review we consider the current data on involvement of such signaling pathways as cyclin/CDK, Ras/Raf/MEK/MAPK, JNK/c-Jun/AP-1, PI3K/Akt/PTEN/mTOR, IKK/I-κB/NF-κB, Wnt/ß-catenin, Notch, Jak/STAT, MITF and some growth factors in regulation of the cell cycle progression, apoptosis and development of human cutaneous melanoma. Understanding of molecular aberrations that underlie melanoma oncogenesis is essential for improvement of diagnosis, accurate prognosis assessment, and rational design of effective therapeutics. Inhibitors of these pathways may serve as promising tools for anti-melanoma targeted therapy. Some novel anti-melanoma target drugs are characterized.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Melanoma/metabolismo , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA